1.212.642.4980     info@ansi.org    8:30am – 6pm EST, Monday – Friday
ANSI Standards Store

Browse ISO Standards
Browse IEC Standards

View all Publishers





View All Standards Packages



Search tips Search tips


Additive Manufacturing Additive manufacturing standards provide a baseline from which development can progress while remaining interoperable and allowing for improved utility across implementations. Including standards from both ISO and ASTM, two international standards developers, this collection of standards starts with standardized terminology and continues on to principles, data processing, and testing, finishing with a series on metals used with powder bed fusion.

go back to Manufacturing and Production Standards home


ASTM F3187-16

Standard Guide for Directed Energy Deposition of Metals

1.1 Directed Energy Deposition (DED) is used for repair, rapid prototyping and low volume part fabrication. This document is intended to serve as a guide for defining the technology application space and limits, DED system set-up considerations, machine operation, process documentation, work practices, and available system and process monitoring technologies. 1.2 DED is an additive manufacturing process in which focused thermal energy is used to fuse materials by melting as they are being deposited. 1.3 DED Systems comprise multiple categories of machines using laser beam (LB), electron beam (EB), or arc plasma energy sources. Feedstock typically comprises either powder or wire. Deposition typically occurs either under inert gas (arc systems or laser) or in vacuum (EB systems). Although these are the predominant methods employed in practice, the use of other energy sources, feedstocks and atmospheres may also fall into this category. 1.4 The values stated in SI units are to be regarded as standard. All units of measure included in this guide are accepted for use with the SI. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3122-14

Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes

1.1 This standard serves as a guide to existing standards or variations of existing standards that may be applicable to determine specific mechanical properties of materials made with an additive manufacturing process. 1.2 As noted in many of these referenced standards, there are several factors that may influence the reported properties, including material, material anisotropy, method of material preparation, porosity, method of specimen preparation, testing environment, specimen alignment and gripping, testing speed, and testing temperature. These factors should be recorded, to the extent that they are known, according to Practice F2971 and the guidelines of the referenced standards. 1.3 The following standards are not referred to directly in the guide but also have information that may be useful in the testing of metal test specimens made via additive manufacturing: A370 , A1058 , B211 , B348 , B557 , B565 , B724 , B769 , E3 , E6 , E7 , E290 , E467 , E468 , E837 , E915 , E1049 , E1823 , E1942 . 1.4 Units The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3091/F3091M-14

Standard Specification for Powder Bed Fusion of Plastic Materials

1.1 This specification describes a method for defining requirements and ensuring component integrity for plastic parts created using powder bed fusion processes. Materials include unfilled formulations and formulations containing fillers, functional additives (for example, flame retardant), and reinforcements or combinations thereof. Processes include all powder bed fusion processes as defined in Terminology F2792 . 1.2 This specification is intended for use by manufacturers of plastic parts using powder bed fusion and for customers procuring such parts. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3056-14e1

Standard Specification for Additive Manufacturing Nickel Alloy (UNS N06625) with Powder Bed Fusion

1.1 This specification covers additively manufactured UNS N06625 components using full-melt powder bed fusion such as electron beam melting and laser melting. The components produced by these processes are used typically in applications that require mechanical properties similar to machined forgings and wrought products. Components manufactured to this specification are often, but not necessarily, post processed via machining, grinding, electrical discharge machining (EDM), polishing, and so forth to achieve desired surface finish and critical dimensions. 1.2 This specification is intended for the use of purchasers or producers, or both, of additively manufactured UNS N06625 components for defining the requirements and ensuring component properties. 1.3 Users are advised to use this specification as a basis for obtaining components that will meet the minimum acceptance requirements established and revised by consensus of the members of the committee. 1.4 User requirements considered more stringent may be met by the addition to the purchase order of one or more supplementary requirements, which may include, but are not limited to, those listed in Supplementary Requirements S1 S16. 1.5 Units The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3055-14a

Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion

1.1 This specification covers additively manufactured UNS N07718 components using full-melt powder bed fusion such as electron beam melting and laser melting. The components produced by these processes are used typically in applications that require mechanical properties similar to machined forgings and wrought products. Components manufactured to this specification are often, but not necessarily, post processed via machining, grinding, electrical discharge machining (EDM), polishing, and so forth to achieve desired surface finish and critical dimensions. 1.2 This specification is intended for the use of purchasers or producers, or both, of additively manufactured UNS N07718 components for defining the requirements and ensuring component properties. 1.3 Users are advised to use this specification as a basis for obtaining components that will meet the minimum acceptance requirements established and revised by consensus of the members of the committee. 1.4 User requirements considered more stringent may be met by the addition to the purchase order of one or more supplementary requirements, which may include, but are not limited to, those listed in Supplementary Requirements S1 S16. 1.5 Units The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3049-14

Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes

1.1 This guide introduces the reader to techniques for metal powder characterization that may be useful for powder-based additive manufacturing processes including binder jetting, directed energy deposition, and powder bed fusion. It refers the reader to other, existing standards that may be applicable for the characterization of virgin and used metal powders processed in additive manufacturing systems. 2 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3001-14

Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion

1.1 This specification covers additively manufactured titanium-6aluminum-4vanadium with extra low interstitials (Ti-6Al-4V ELI) components using full-melt powder bed fusion such as electron beam melting and laser melting. The components produced by these processes are used typically in applications that require mechanical properties similar to machined forgings and wrought products. Components manufactured to this specification are often, but not necessarily, post processed via machining, grinding, electrical discharge machining (EDM), polishing, and so forth to achieve desired surface finish and critical dimensions. 1.2 This specification is intended for the use of purchasers or producers or both of additively manufactured Ti-6Al-4V ELI components for defining the requirements and ensuring component properties. 1.3 Users are advised to use this specification as a basis for obtaining components that will meet the minimum acceptance requirements established and revised by consensus of the members of the committee. 1.4 User requirements considered more stringent may be met by the addition to the purchase order of one or more supplementary requirements, which may include, but are not limited to, those listed in S1-S4 and S1-S16 in Specification F2924. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.


ASTM F2971-13

Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing

1.1 This practice describes a standard procedure for reporting results by testing or evaluation of specimens produced by additive manufacturing (AM). This practice provides a common format for presenting data for AM specimens, for two purposes: (1) to establish further data reporting requirements, and (2) to provide information for the design of material property databases. 1.2 The values stated in SI units are required for all additive manufacturing related standards. However, when this standard is used in combination with any test method or equipment specified in inch-pound units the results should be reported with mathematical conversions to SI units immediately following in parentheses. The conversions shall be provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F2924-14

Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion

1.1 This specification covers additively manufactured titanium-6aluminum-4vanadium (Ti-6Al-4V) components using full-melt powder bed fusion such as electron beam melting and laser melting. The components produced by these processes are used typically in applications that require mechanical properties similar to machined forgings and wrought products. Components manufactured to this specification are often, but not necessarily, post processed via machining, grinding, electrical discharge machining (EDM), polishing, and so forth to achieve desired surface finish and critical dimensions. 1.2 This specification is intended for the use of purchasers or producers, or both, of additively manufactured Ti-6Al-4V components for defining the requirements and ensuring component properties. 1.3 Users are advised to use this specification as a basis for obtaining components that will meet the minimum acceptance requirements established and revised by consensus of the members of the committee. 1.4 User requirements considered more stringent may be met by the addition to the purchase order of one or more Supplementary Requirements, which may include, but are not limited to, those listed in S1-S16. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ISO/ASTM 52921:2013

Standard terminology for additive manufacturing - Coordinate systems and test methodologies

ISO/ASTM 52921:2013 includes terms, definitions of terms, descriptions of terms, nomenclature, and acronyms associated with coordinate systems and testing methodologies for additive manufacturing (AM) technologies in an effort to standardize terminology used by AM users, producers, researchers, educators, press/media, and others, particularly when reporting results from testing of parts made on AM systems. Terms included cover definitions for machines/systems and their coordinate systems plus the location and orientation of parts. It is intended, where possible, to be compliant with ISO 841 and to clarify the specific adaptation of those principles to additive manufacturing.


ISO/ASTM 52915:2016

Specification for Additive Manufacturing File Format (AMF) Version 1.2

ISO/ASTM 52915:2016 provides the specification for the Additive Manufacturing File Format (AMF), an interchange format to address the current and future needs of additive manufacturing technology. The AMF may be prepared, displayed and transmitted provided the requirements of this specification are met. When prepared in a structured electronic format, strict adherence to an extensible markup language (XML)[1] schema is required to support standards-compliant interoperability. A W3C XML schema definition (XSD) for the AMF is available from ISO from http://standards.iso.org/iso/52915 and from ASTM from www.astm.org/MEETINGS/images/amf.xsd. An implementation guide for such an XML schema is provided in Annex A. It is recognized that there is additional information relevant to the final part that is not covered by the current version of this International Standard. Suggested future features are listed in Annex B. ISO/ASTM 52915:2016 does not specify any explicit mechanisms for ensuring data integrity, electronic signatures and encryptions.


ISO/ASTM 52900:2015

Additive manufacturing - General principles - Terminology

ISO/ASTM 52900:2015 establishes and defines terms used in additive manufacturing (AM) technology, which applies the additive shaping principle and thereby builds physical 3D geometries by successive addition of material. The terms have been classified into specific fields of application. New terms emerging from the future work within ISO/TC 261 and ASTM F42 will be included in upcoming amendments and overviews of this International Standard.


ISO 17296-2:2015

Additive manufacturing - General principles - Part 2: Overview of process categories and feedstock

ISO 17296-2:2015 describes the process fundamentals of Additive Manufacturing (AM). It also gives an overview of existing process categories, which are not and cannot be exhaustive due to the development of new technologies. ISO 17296-2:2015 explains how different process categories make use of different types of materials to shape a product's geometry. It also describes which type of material is used in different process categories. Specification of feedstock material and requirements for the parts produced by combinations of different processes and feedstock material will be given in subsequent separate standards and are therefore not covered by ISO 17296-2:2015. ISO 17296-2:2015 describes the overreaching principles of these subsequent standards.


ISO 17296-3:2014

Additive manufacturing - General principles - Part 3: Main characteristics and corresponding test methods


ISO 17296-4:2014

Additive manufacturing - General principles - Part 4: Overview of data processing