Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

Aerosol

Aerosol particle testing standards are published by ASTM and ISO. ASTM standards cover Controlling and Characterizing Errors in Weighing Collected Aerosols, Evaluating the Performance of Respirable Aerosol Samplers, and Using Aerosol Filtration for Measuring the Performance of Porous Packaging Materials as a Surrogate Microbial Barrier. The ISO standard covers fire chemistry in measurement of aerosols.


ASTM D6552-06(2021)

Standard Practice for Controlling and Characterizing Errors in Weighing Collected Aerosols

1.1 Assessment of airborne aerosol hazards in the occupational setting entails sampling onto a collection medium followed by analysis of the collected material. The result is generally an estimated concentration of a possibly hazardous material in the air. The uncertainty in such estimates depends on several factors, one of which relates to the specific type of analysis employed. The most commonly applied method for analysis of aerosols is the weighing of the sampled material. Gravimetric analysis, though apparently simple, is subject to errors from instability in the mass of the sampling medium and other elements that must be weighed. An example is provided by aerosol samplers designed to collect particles so as to agree with the inhalable aerosol sampling convention (see ISO 7708, Guide D6062 , and EN 481). For some sampler types, filter and cassette are weighed together to make estimates. Therefore, if the cassette, for example, absorbs or loses water between the weighings required for a concentration estimation, then errors may arise. This practice covers such potential errors and provides solutions for their minimization. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D6061-01(2018)e1

Standard Practice for Evaluating the Performance of Respirable Aerosol Samplers

1.1 This practice covers the evaluation of the performance of personal samplers of non-fibrous respirable aerosol. The samplers are assessed relative to a specific respirable sampling convention. The convention is one of several that identify specific particle size fractions for assessing health effects of airborne particles. When a health effects assessment has been based on a specific convention it is appropriate to use that same convention for setting permissible exposure limits in the workplace and ambient environment and for monitoring compliance. The conventions, which define inhalable, thoracic, and respirable aerosol sampler ideals, have now been adopted by the International Standards Organization (ISO 7708), the Comit Europ en de Normalisation (CEN Standard EN 481), and the American Conference of Governmental Industrial Hygienists (ACGIH, Ref ( 1 ) ), 2 developed ( 2 ) in part from health-effects studies reviewed in Ref ( 3 ) and in part as a compromise between definitions proposed in Refs ( 3 , 4 ) . 1.2 This practice is complementary to Test Method D4532 , which specifies a particular instrument, the 10-mm cyclone. 3 The sampler evaluation procedures presented in this practice have been applied in the testing of the 10-mm cyclone as well as the Higgins-Dewell cyclone. 3 , 4 Details on the evaluation have been published ( 5- 7 ) and can be incorporated into revisions of Test Method D4532 . 1.3 A central aim of this practice is to provide information required for characterizing the uncertainty of concentration estimates from samples taken by candidate samplers. For this purpose, sampling accuracy data from the performance tests given here can be combined with information as to analytical and sampling pump uncertainty obtained externally. The practice applies principles of ISO GUM, expanded to cover situations common in occupational hygiene measurement, where the measurand varies markedly in both time and space. A general approach ( 8 ) for dealing with this situation relates to the theory of tolerance intervals and may be summarized as follows: Sampling/analytical methods undergo extensive evaluations and are subsequently applied without re-evaluation at each measurement, while taking precautions (for example, through a quality assurance program) that the method remains stable. Measurement uncertainty is then characterized by specifying the evaluation confidence (for example, 95 %) that confidence intervals determined by measurements bracket measurand values at better than a given rate (for example, 95 %). Moreover, the systematic difference between candidate and idealized aerosol samplers can be expressed as a relative bias, which has proven to be a useful concept and is included in the specification of accuracy ( 3.2.13 , 3.2.13.1 , 3.2.13.3 ). 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2638-18

Standard Test Method for Using Aerosol Filtration for Measuring the Performance of Porous Packaging Materials as a Surrogate Microbial Barrier

1.1 This test method measures the aerosol filtration performance of porous packaging materials by creating a defined aerosol of 1.0 m particles and assessing the filtration efficiency of the material using either single or dual particle counters. 1.2 This test method is applicable to porous materials used to package terminally sterilized medical devices. 1.3 The intent of this test apparatus is to determine the flow rate through a material at which maximum penetration occurs. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ISO 29904:2013

Fire chemistry - Generation and measurement of aerosols

ISO 29904:2013 provides a guide to the generation of aerosol particles in fires, defines apparatus and procedures for the sampling and measurement of aerosols, and provides procedures for the interpretation and reporting of the data. It is intended to assist fire test designers and those making measurements at unwanted fires to choose and use appropriate methods for aerosol measurement for differing hazards to people and the environment. ISO 29904:2013 identifies the scope, applicability, and limitations of each method. The interpretation of the data from these measurements is strongly dependent on the end use of the data. Fire-generated aerosols may present a direct risk of restricting escape from fire by obscuring an exit route, or they may produce chronic health and environmental hazards from chemical compounds contained in the aerosol (for example, toxic chemicals like polycyclic aromatic hydrocarbons in soot or radionuclides form nuclear plant fires.) Aerosol particles may be inhaled to various depths in the lungs, depending on their size and density, or may be released into the environment and deposited on land and in watercourses. In particular, it addresses the following aspects of aerosol generation and measurement in fires: Adsorbed/dissolved gas or vapour phase species; Physical mechanisms involved in the transport of aerosols, dispersal in the fire plume, coagulation/agglomeration leading to variation in particle sizes and fractions, thermophoresis (main cause of soot deposition), diffusiophoresis and, sedimentation. The interactions between gases and vapours and aerosol: adsorption and removal of species from gas phase, transportation of adsorbed gases into the lungs; Sampling and measurement methods, including their principles of operation, method description, the data provided, and in each case their scope, field of application, advantages and disadvantages; Metrology of the measurement methods, and in the generation of standard aerosols , and the related uncertainties; Physiological and environmental effects of aerosols insofar as these effects can be used to define the measurement method for specific applications; and Hazards of carbon particles present in the fire effluent as visible smoke through their size, morphology, chemical nature, and the nature of the effluent in which they are (or were) suspended. ISO 29904:2013 is not oriented toward the aerosols generated from controlled combustion. (e.g. incineration). However, much of the material in ISO 29904:2013 is common to such aerosols.


ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS