Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

Radiation

Semiconductor Reliability Standards include tests for electrostatic discharge (ESD), radiation-hardness, longevity and life-span estimations through accelerated testing, as well as other varied tests for semiconductors and semiconductor devices.


ASTM E722-19

Standard Practice for Characterizing Neutron Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics

1.1 This practice covers procedures for characterizing neutron fluence from a source in terms of an equivalent monoenergetic neutron fluence. It is applicable to neutron effects testing, to the development of test specifications, and to the characterization of neutron test environments. The sources may have a broad neutron-energy range, or may be mono-energetic neutron sources with energies up to 20 MeV. This practice is not applicable in cases where the predominant source of displacement damage is from neutrons of energy less than 10 keV. The relevant equivalence is in terms of a specified effect on certain physical properties of materials upon which the source spectrum is incident. In order to achieve this, knowledge of the effects of neutrons as a function of energy on the specific property of the material of interest is required. Sharp variations in the effects with neutron energy may limit the usefulness of this practice in the case of mono-energetic sources. 1.2 This practice is presented in a manner to be of general application to a variety of materials and sources. Correlation between displacements ( 1- 3 ) 2 caused by different particles (electrons, neutrons, protons, and heavy ions) is out of the scope of this practice but is addressed in Practice E3084 . In radiation-hardness testing of electronic semiconductor devices, specific materials of interest include silicon and gallium arsenide, and the neutron sources generally are test and research reactors and californium-252 irradiators. 1.3 The technique involved relies on the following factors: (1) a detailed determination of the fluence spectrum of the neutron source, and (2) a knowledge of the degradation (damage) effects of neutrons as a function of energy on specific material properties. 1.4 The detailed determination of the neutron fluence spectrum referred to in 1.3 need not be performed afresh for each test exposure, provided the exposure conditions are repeatable. When the spectrum determination is not repeated, a neutron fluence monitor shall be used for each test exposure. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard, except for MeV, keV, eV, MeV mbarn, rad(Si) cm 2 , and rad(GaAs) cm 2 . 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM E720-16

Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics

1.1 This guide covers the selection and use of neutron-activation detector materials to be employed in neutron spectra adjustment techniques used for radiation-hardness testing of electronic semiconductor devices. Sensors are described that have been used at many radiation hardness-testing facilities, and comments are offered in table footnotes concerning the appropriateness of each reaction as judged by its cross-section accuracy, ease of use as a sensor, and by past successful application. This guide also discusses the fluence-uniformity, neutron self-shielding, and fluence-depression corrections that need to be considered in choosing the sensor thickness, the sensor covers, and the sensor locations. These considerations are relevant for the determination of neutron spectra from assemblies such as TRIGA- and Godiva-type reactors and from Californium irradiators. This guide may also be applicable to other broad energy distribution sources up to 20 MeV. 1.2 This guide also covers the measurement of the gamma-ray or beta-ray emission rates from the activation foils and other sensors as well as the calculation of the absolute specific activities of these foils. The principal measurement technique is high-resolution gamma-ray spectrometry. The activities are used in the determination of the energy-fluence spectrum of the neutron source. See Guide E721 . 1.3 Details of measurement and analysis are covered as follows:... 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM E721-16

Standard Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics

1.1 This guide covers procedures for determining the energy-differential fluence spectra of neutrons used in radiation-hardness testing of electronic semiconductor devices. The types of neutron sources specifically covered by this guide are fission or degraded energy fission sources used in either a steady-state or pulse mode. 1.2 This guide provides guidance and criteria that can be applied during the process of choosing the spectrum adjustment methodology that is best suited to the available data and relevant for the environment being investigated. 1.3 This guide is to be used in conjunction with Guide E720 to characterize neutron spectra and is used in conjunction with Practice E722 to characterize damage-related parameters normally associated with radiation-hardness testing of electronic-semiconductor devices. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F1190-18

Standard Guide for Neutron Irradiation of Unbiased Electronic Components

1.1 This guide strictly applies only to the exposure of unbiased silicon (Si) or gallium arsenide (GaAs) semiconductor components (integrated circuits, transistors, and diodes) to neutron radiation to determine the permanent damage in the components. Validated 1-MeV displacement damage functions codified in National Standards are not currently available for other semiconductor materials. 1.2 Elements of this guide, with the deviations noted, may also be applicable to the exposure of semiconductors comprised of other materials except that validated 1-MeV displacement damage functions codified in National standards are not currently available. 1.3 Only the conditions of exposure are addressed in this guide. The effects of radiation on the test sample should be determined using appropriate electrical test methods. 1.4 This guide addresses those issues and concerns pertaining to irradiations with neutrons. 1.5 System and subsystem exposures and test methods are not included in this guide. 1.6 The range of interest for neutron fluence in displacement damage semiconductor testing range from approximately 10 9 to 10 16 1-MeV n/cm 2 . 1.7 This guide does not address neutron-induced single or multiple neutron event effects or transient annealing. 1.8 This guide provides an alternative to Test Method 1017, Neutron Displacement Testing, a component of MIL-STD-883 and MIL-STD-750. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F1192-11(2018)

Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices

1.1 This guide defines the requirements and procedures for testing integrated circuits and other devices for the effects of single event phenomena (SEP) induced by irradiation with heavy ions having an atomic number Z 2. This description specifically excludes the effects of neutrons, protons, and other lighter particles that may induce SEP via another mechanism. SEP includes any manifestation of upset induced by a single ion strike, including soft errors (one or more simultaneous reversible bit flips), hard errors (irreversible bit flips), latchup (persistent high conducting state), transients induced in combinatorial devices which may introduce a soft error in nearby circuits, power field effect transistor (FET) burn-out and gate rupture. This test may be considered to be destructive because it often involves the removal of device lids prior to irradiation. Bit flips are usually associated with digital devices and latchup is usually confined to bulk complementary metal oxide semiconductor, (CMOS) devices, but heavy ion induced SEP is also observed in combinatorial logic programmable read only memory, (PROMs), and certain linear devices that may respond to a heavy ion induced charge transient. Power transistors may be tested by the procedure called out in Method 1080 of MIL STD 750. 1.2 The procedures described here can be used to simulate and predict SEP arising from the natural space environment, including galactic cosmic rays, planetary trapped ions, and solar flares. The techniques do not, however, simulate heavy ion beam effects proposed for military programs. The end product of the test is a plot of the SEP cross section (the number of upsets per unit fluence) as a function of ion LET (linear energy transfer or ionization deposited along the ion's path through the semiconductor). This data can be combined with the system's heavy ion environment to estimate a system upset rate. 1.3 Although protons can cause SEP, they are not included in this guide. A separate guide addressing proton induced SEP is being considered. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F1467-18

Standard Guide for Use of an X-Ray Tester (≈10 keV Photons) in Ionizing Radiation Effects Testing of Semiconductor Devices and Microcircuits

1.1 This guide covers recommended procedures for the use of X-ray testers (that is, sources with a photon spectrum having 10 keV mean photon energy and 50 keV maximum energy) in testing semiconductor discrete devices and integrated circuits for effects from ionizing radiation. 1.2 The X-ray tester may be appropriate for investigating the susceptibility of wafer level or delidded microelectronic devices to ionizing radiation effects. It is not appropriate for investigating other radiation-induced effects such as single-event effects (SEE) or effects due to displacement damage. 1.3 This guide focuses on radiation effects in metal oxide semiconductor (MOS) circuit elements, either designed (as in MOS transistors) or parasitic (as in parasitic MOS elements in bipolar transistors). 1.4 Information is given about appropriate comparison of ionizing radiation hardness results obtained with an X-ray tester to those results obtained with cobalt-60 gamma irradiation. Several differences in radiation-induced effects caused by differences in the photon energies of the X-ray and cobalt-60 gamma sources are evaluated. Quantitative estimates of the magnitude of these differences in effects, and other factors that should be considered in setting up test protocols, are presented. 1.5 If a 10-keV X-ray tester is to be used for qualification testing or lot acceptance testing, it is recommended that such tests be supported by cross checking with cobalt-60 gamma irradiations. 1.6 Comparisons of ionizing radiation hardness results obtained with an X-ray tester with results obtained with a LINAC, with protons, etc. are outside the scope of this guide. 1.7 Current understanding of the differences between the physical effects caused by X-ray and cobalt-60 gamma irradiations is used to provide an estimate of the ratio (number-of-holes-cobalt-60)/(number-of-holes-X-ray). Several cases are defined where the differences in the effects caused by X-rays and cobalt-60 gammas are expected to be small. Other cases where the differences could potentially be as great as a factor of four are described. 1.8 It should be recognized that neither X-ray testers nor cobalt-60 gamma sources will provide, in general, an accurate simulation of a specified system radiation environment. The use of either test source will require extrapolation to the effects to be expected from the specified radiation environment. In this guide, we discuss the differences between X-ray tester and cobalt-60 gamma effects. This discussion should be useful as background to the problem of extrapolation to effects expected from a different radiation environment. However, the process of extrapolation to the expected real environment is treated elsewhere ( 1 , 2 ) . 2 1.9 The time scale of an X-ray irradiation and measurement may be much different than the irradiation time in the expected device application. Information on time-dependent effects is given. 1.10 Possible lateral spreading of the collimated X-ray beam beyond the desired irradiated region on a wafer is also discussed. 1.11 Information is given about recommended experimental methodology, dosimetry, and data interpretation. 1.12 Radiation testing of semiconductor devices may produce severe degradation of the electrical parameters of irradiated devices and should therefore be considered a destructive test. 1.13 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.14 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.15 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F1893-18

Guide for Measurement of Ionizing Dose-Rate Survivability and Burnout of Semiconductor Devices

1.1 This guide defines the detailed requirements for testing semiconductor devices for short-pulse high dose-rate ionization-induced survivability and burnout failure. The test facility shall be capable of providing the necessary dose rates to perform the measurements. Typically, large flash X-ray (FXR) machines operated in the photon mode, or FXR e-beam facilities are utilized because of their high dose-rate capabilities. Electron Linear Accelerators (LINACs) may be used if the dose rate is sufficient. Two modes of test are described: ( 1 ) A survivability test, and ( 2 ) A burnout failure level test. 1.2 The values stated in International System of Units (SI) are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F448-18

Standard Test Method for Measuring Steady-State Primary Photocurrent

1.1 This test method covers the measurement of steady-state primary photocurrent, I pp , generated in semiconductor devices when these devices are exposed to ionizing radiation. These procedures are intended for the measurement of photocurrents greater than 10 9 A s/Gy(Si or Ge), in cases for which the relaxation time of the device being measured is less than 25 % of the pulse width of the ionizing source. The validity of these procedures for ionizing dose rates as great as 10 8 Gy(Si or Ge)/s has been established. The procedures may be used for measurements at dose rates as great as 10 10 Gy(Si or Ge)/s; however, extra care must be taken. Above 10 8 Gy/s, the package response may dominate the device response for any device. Additional precautions are also required when measuring photocurrents of 10 9 A s/Gy(Si or Ge) or lower. 1.2 Setup, calibration, and test circuit evaluation procedures are also included in this test method. 1.3 Because of the variability between device types and in the requirements of different applications, the dose rate range over which any specific test is to be conducted is not given in this test method but must be specified separately. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F980-16

Standard Guide for Measurement of Rapid Annealing of Neutron-Induced Displacement Damage in Silicon Semiconductor Devices

1.1 This guide defines the requirements and procedures for testing silicon discrete semiconductor devices and integrated circuits for rapid-annealing effects from displacement damage resulting from neutron radiation. This test will produce degradation of the electrical properties of the irradiated devices and should be considered a destructive test. Rapid annealing of displacement damage is usually associated with bipolar technologies. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F996-11(2018)

Standard Test Method for Separating an Ionizing Radiation-Induced MOSFET Threshold Voltage Shift Into Components Due to Oxide Trapped Holes and Interface States Using the Subthreshold Current–Voltage Characteristics

1.1 This test method covers the use of the subthreshold charge separation technique for analysis of ionizing radiation degradation of a gate dielectric in a metal-oxide-semiconductor-field-effect transistor (MOSFET) and an isolation dielectric in a parasitic MOSFET. 2 , 3 , 4 The subthreshold technique is used to separate the ionizing radiation-induced inversion voltage shift, V INV into voltage shifts due to oxide trapped charge, V ot and interface traps, V it . This technique uses the pre- and post-irradiation drain to source current versus gate voltage characteristics in the MOSFET subthreshold region. 1.2 Procedures are given for measuring the MOSFET subthreshold current-voltage characteristics and for the calculation of results. 1.3 The application of this test method requires the MOSFET to have a substrate (body) contact. 1.4 Both pre- and post-irradiation MOSFET subthreshold source or drain curves must follow an exponential dependence on gate voltage for a minimum of two decades of current. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS