ANSI Z535.1-2006 (R2011)

Reaffirmation of ANSI Z535.1-2006

American National Standard

Safety Colors

Secretariat:

National Electrical Manufacturers Association

Approved February 16, 2006
Published January 31, 2007
Reaffirmed July 19, 2011

American National Standards Institute, Inc.
DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

ANSI standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

National Electrical Manufacturers Association
1300 North 17th Street, Rosslyn, VA 22209

© Copyright 2011 by National Electrical Manufacturers Association
All rights reserved including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.
This page intentionally left blank.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Scope</td>
<td>1</td>
</tr>
<tr>
<td>3 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>3.1 Intent</td>
<td>1</td>
</tr>
<tr>
<td>3.2 Engineering or administrative controls</td>
<td>1</td>
</tr>
<tr>
<td>3.3 Existing American National Standards</td>
<td>2</td>
</tr>
<tr>
<td>4 Application</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Colors specified</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Specifications for safety colors</td>
<td>2</td>
</tr>
<tr>
<td>4.3 Illumination</td>
<td>2</td>
</tr>
<tr>
<td>4.4 Optimum visibility</td>
<td>2</td>
</tr>
<tr>
<td>5 Color specifications and test methods for ordinary surface colors</td>
<td>2</td>
</tr>
<tr>
<td>5.1 Color specifications</td>
<td>2</td>
</tr>
<tr>
<td>5.1.1 Primary color specifications</td>
<td>2</td>
</tr>
<tr>
<td>5.1.2 Color tolerance charts</td>
<td>2</td>
</tr>
<tr>
<td>5.1.3 Safety white</td>
<td>2</td>
</tr>
<tr>
<td>5.1.4 Maximum recognition</td>
<td>3</td>
</tr>
<tr>
<td>5.2 Visual test method</td>
<td>3</td>
</tr>
<tr>
<td>5.2.1 Visual reference standards</td>
<td>3</td>
</tr>
<tr>
<td>5.2.2 Visual test conditions</td>
<td>3</td>
</tr>
<tr>
<td>5.3 Instrumental test method</td>
<td>3</td>
</tr>
<tr>
<td>5.3.1 Instrumental color specification for each color</td>
<td>3</td>
</tr>
<tr>
<td>5.3.2 Use of spectrophotometers</td>
<td>3</td>
</tr>
<tr>
<td>6 Color specifications and test methods for retroreflective materials</td>
<td>3</td>
</tr>
<tr>
<td>6.1 General</td>
<td>3</td>
</tr>
<tr>
<td>6.2 Visual</td>
<td>4</td>
</tr>
<tr>
<td>6.3 Instrumental</td>
<td>4</td>
</tr>
<tr>
<td>7 Color specifications and instrumental test methods for fluorescent materials</td>
<td>4</td>
</tr>
<tr>
<td>7.1 General</td>
<td>4</td>
</tr>
<tr>
<td>7.2 Compliance tests</td>
<td>4</td>
</tr>
<tr>
<td>7.3 Fundamental specifications of fluorescent safety colors</td>
<td>4</td>
</tr>
<tr>
<td>8 References</td>
<td>4</td>
</tr>
</tbody>
</table>
Figures

1 CIE 1931 Chromaticity Diagram Showing the Areas Representing the ANSI Z535.1 Safety Colors...13
2 Enlarged View of the CIE 1931 Chromaticity Diagram Showing the Areas Representing the ANSI Z535.1 Safety Colors for White, Grey, and Black...14
3 CIE 1931 Chromaticity Diagram Showing the Areas Representing Fluorescent Safety Color Illuminated by a Source Equivalent to CIE D_{65} and Measured Using 45/0 Geometry...15

Tables

1 Specifications of the Safety Colors for CIE Illuminant C (Representative of Overcast North Sky Daylight) and the CIE 1931, 2° Standard Observer...7
2 Equations of the Boundary Lines for the Specified Chromaticity Regions of Fluorescent Safety Colors Illuminated by a Source Equivalent to CIE D_{65}, Measured Using 15/0 Geometry, and Expressed in the CIE 1931 System...11
3 Chromaticity Coordinates of the Corners of the Recommended Regions of Fluorescent Safety Colors Illuminated by a Source Equivalent to CIE D_{65}, Measured Using 15/0 Geometry, and Expressed in the CIE 1931 System...11
4 Minimum Permissible Values of Luminance Factors and/or Spectral (Total) Radiance Factors, Within the Indicated Wavelength Range, of Fluorescent Safety Colors Illuminated by a Source Equivalent to CIE D_{65} and Measured Using 45/0 Geometry...12

Annexes

A Understanding and Using the Color Specifications Set Forth in the ANSI Z535.1 Standard for Safety Colors...16
Foreword

In 1979, the ANSI Z53 Committee on Safety Colors was combined with the ANSI Z35 Committee on Safety Signs to form the ANSI Z535 Committee on Safety Signs and Colors. The Z535 Committee has the following scope:

To develop standards for the design, application, and use of signs, colors, and symbols intended to identify and warn against specific hazards and for other accident prevention purposes.

While the basic mission and fundamental purpose of the ANSI Z535 Committee is to develop, refine, and promote a single, uniform graphic system used for communicating safety and accident prevention information, the Z535 Committee recognizes that this information can also be effectively communicated using other graphic systems.

The Z535 Committee created subcommittees to update the Z53 and Z35 standards and to write new standards. To date, the following six standards comprise the ANSI Z535 series:

- ANSI Z535.1 Safety Colors (ANSI Z53.1-1979 was updated and combined into this standard in 1991)
- ANSI Z535.2 Environmental and Facility Safety Signs (ANSI Z35.1-1972 and Z35.4-1972 were updated and combined into this standard in 1991)
- ANSI Z535.3 Criteria for Safety Symbols (new in 1991)
- ANSI Z535.4 Product Safety Signs and Labels (new in 1991)
- ANSI Z535.5 Safety Tags and Barricade Tapes (for Temporary Hazards) (ANSI Z35.2-1974 was updated and combined into this standard in 1991)
- ANSI Z535.6 Product Safety Information in Product Manuals, Instructions, and Other Collateral Materials (new in 2006)

Together, these six standards contain the information needed to specify formats, colors, and symbols for safety signs used in environmental and facility applications, product and product literature applications, and temporary safety tag and barricade tape applications.

Published separately is the ANSI Z535 Safety Color Chart. This chart gives the user a sample of each of the safety colors red, orange, yellow, green, blue, purple, brown, grey, white, and black. It also describes each color’s ink formulation and closest PANTONE® color.

This ANSI Z535.1 standard was prepared by the Z535.1 Subcommittee on Safety Colors. The foreword and all annexes are considered to be informative; the body is considered normative. In the vocabulary of writing standards, the word “informative” is meant to convey that the content presented is for informational purposes only and is not considered to be mandatory in nature. The word "normative" is meant to convey that the content is considered to be mandatory or prescriptive.

The 2011 edition of this standard is the eighth revision of the American War Standard, developed at the request of the War Department and approved by the American Standards Association (ASA) on July 16, 1945. The ASA was reconstituted as the USA Standards Institute (USASI) in August 1966, and as the American National Standards Institute (ANSI) in October 1969. Peacetime work on revising the American War Standard containing the Safety Color Code began in 1946 under committee procedures of the ASA, with the National Safety Council serving as sponsor of the project. The Sectional Committee on the Safety Color Code, Z53, reviewed the War Standard and enlarged its application to include the colors orange, blue, and purple. The committee also approved standard definitions and limits for the colors. The revised standard was approved by the ASA on September 11, 1953. In the 1971 revision, the Z53 committee deleted the color blue and modified the application of the color yellow, due to conflicts with other American National Standards.

In the fourth revision, a significant step forward was made toward increased safety through uniformity in safety color coding. The safety colors formerly used in this standard were combined and adjusted to give the best feasible discrimination for observers with either normal or color-deficient (colorblind) vision. For
the first time, safety color tolerance charts were available for use with this standard (see Section 8, Reference 17). Each color tolerance chart shows the standard color and six color tolerances illustrating acceptable ranges in hue, value (lightness), and chroma (saturation). Each color tolerance chart also lists the Munsell notation and equivalent CIE specifications \((x, y, Y)\) for each standard color and tolerance sample. The colors brown, blue, and gray were added, and Table 1 was expanded to include the same information on most of the levels of the Universal Color Language (UCL) for the tolerance samples as for the standard or central sample of each Safety Color. Sections 1 to 6 of the present standard contain material similar to the fourth revision (Z53.1, 1979).

The intent of the fifth revision (1991) of the safety color standard was to provide a series of visually distinguishable safety colors, each with specific uses. The sixth revision in 1998 incorporated corrections and additions that helped to clarify the use of the standard in conjunction with the other Z535 standards. Annex A was also added at this time to explain how to relate the CIE safety color specifications contained in Table 1 with the CIE chromaticity diagrams illustrated in Figures 1, 2, and 3.

The seventh revision of the ANSI Z535.1 Safety Color Code, in 2002, had two major changes. The first is the deletion of information concerning the application of the safety colors. The intention in making this change was to maintain Z535.1 as the standard that defines the safety colors in terms of their color tolerances. The application of the colors (i.e., how they are to be used) properly belongs to the other standards in the ANSI Z535 series as well as to other standards that include uses for safety colors. The second change was to include the “closest PANTONE® color” number for all of the safety colors on the Safety Color Chart that did not have a PANTONE® color reference. This was a practical addition that makes it easier for those needing to specify a safety color using the PANTONE® color matching system.

It is important to note that the color-rendering characteristics of several types of modern, high-efficiency light sources differ markedly from those of the average daylight source (CIE Source C) specified in Table 1. It is therefore essential that candidate safety colors be examined under the actual light sources to be used in order to ensure that they can be suitably differentiated and individually identified with their assigned color names.

The limited color gamut and aging characteristics of fluorescent colorants combine to restrict the number and chromaticities of fluorescent safety colors. For this reason, categories of unrestricted red-orange and unrestricted yellow fluorescent colors were added in 1998 to supplement the restricted specifications that are equivalent to CIE international standards. The unrestricted specifications may be used when no more than three distinguishable fluorescent safety colors are required for outdoor use for up to two years.

Recent research is providing conclusive evidence that highly chromatic colors, in some chromaticities, serve to increase or decrease the perception of lightness (for reflective materials) and brightness (for self-luminous objects). The effect is more dramatic in the case of colored lights and colored retroreflective materials. Future revisions of this standard might consider opportunities for improving the visibility of safety signs, colors, and symbols through the selective use of vividly colored retroreflectors as well as include test methods and color specifications for retroreflective and self-luminous materials.

The 2006 version of this standard was nearly identical to the ANSI Z535.1-2002 version, with an updated reference section and a new title, reflecting that the standard is meant to be used as a reference to define specific colors, not to set forth or codify the uses of these colors for specific purposes.

In 2010, the Z535.1 Subcommittee reviewed ANSI Z535.1-2006 and, not identifying any technical changes, recommended reaffirmation of the standard to the Z535 Committee. In its review, however, the Z535.1 Subcommittee made the following corrections:

- In the references (Section 8), the address for Hale Color Charts, Inc. to read as follows:
 Hale Color Charts, Inc., 4532 Court Way, Naples, FL 34109;
- In Table 1, corrected the following for Safety Orange:
Value + changed from 5.0YR 6.0/15 to 5.0YR 6.5/15
Value – changed from 5.0YR 6.5/15 to 5.0YR 5.5/15
Chroma + changed from 5.0YR 5.5/15 to 5.0YR 6.0/16;

- In Annex A, 6th paragraph, after "CIE 1930," replaced the box symbol with a degree symbol;
- In Figure 1, the centroid for each color was checked and relocated as necessary.

Proposals for improvement of this standard are welcome. Information concerning submittal of proposals to the ANSI Z535 Committee for consideration can be found at the back of this standard.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee Z535 on Safety Signs and Colors. Committee approval of this standard does not necessarily imply that all committee members voted for its approval At the time it reaffirmed this standard, the Z535 Committee had the following members:

Gary M. Bell, Chair
Richard Olesen, Vice Chair
Greg Winchester, Secretary

Organization Represented: **Name of Representative:**

American Society of Safety Engineers
J. Paul Frantz
Thomas F. Breshnahan (Alt.)
Howard A. Elwell (Alt.)

American Welding Society
August F. Manz

Applied Materials
Edward Karl
Carl Wong (Alt.)

Applied Safety and Ergonomics
Steve Hall
Stephen Young (Alt.)

Association for Manufacturing Technology
David Felinski

Association of Equipment Manufacturers
Michael Weber
Daniel Taylor (Alt.)

Browning Arms Company
Larry D. Nelson

Caterpillar, Inc.
Charles Crowell
Mark Steffen (Alt.)

Clarion Safety Systems, LLC
Geoffrey Peckham

Dorris and Associates International, LLC
Nathan T. Dorris
Alan Dorris (Alt.)
Kelly Burke (Alt.)

Eagle Crusher Co.
Ryan Parsell

Edison Electric Institute
David Young
<table>
<thead>
<tr>
<th>Organization</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hale Color Consultants, Inc.</td>
<td>William N. Hale</td>
</tr>
<tr>
<td>Human Factors & Ergonomics Society</td>
<td>Michael Kalsher</td>
</tr>
<tr>
<td></td>
<td>Michael S. Wogalter (Alt.)</td>
</tr>
<tr>
<td>Human Factors & Safety Analytics, Inc.</td>
<td>B. Jay Martin</td>
</tr>
<tr>
<td>Institute of Electrical & Electronics Engineers</td>
<td>Sue Vogel</td>
</tr>
<tr>
<td>International Safety Equipment Association</td>
<td>Janice Comer Bradley</td>
</tr>
<tr>
<td></td>
<td>Christine Fargo (Alt.)</td>
</tr>
<tr>
<td>International Staple, Nail, and Tool Association</td>
<td>John W. Kurtz</td>
</tr>
<tr>
<td>Lab Safety Supply, Inc.</td>
<td>Jim Versweyveld</td>
</tr>
<tr>
<td>Law Office of Mathew Kundinger</td>
<td>Mathew Kundinger</td>
</tr>
<tr>
<td>Marhefka & Associates</td>
<td>Russell E. Marhefka</td>
</tr>
<tr>
<td>National Association of Graphic Identification Manufacturers</td>
<td>Russ Butchko, Donna Ehrmann (Alt.)</td>
</tr>
<tr>
<td>National Electrical Manufacturers Association</td>
<td>John Katzbeck</td>
</tr>
<tr>
<td>National Spray Equipment Manufacturers Association</td>
<td>Angela Redlund-Spieker</td>
</tr>
<tr>
<td>P&G Duracell, Inc.</td>
<td>Linda Moquet</td>
</tr>
<tr>
<td></td>
<td>Steven Wicelinski (Alt.)</td>
</tr>
<tr>
<td>Power Tool Institute</td>
<td>Brett Cohen</td>
</tr>
<tr>
<td></td>
<td>Mark Hickok (Alt.)</td>
</tr>
<tr>
<td></td>
<td>Charles M. Stockinger (Alt.)</td>
</tr>
<tr>
<td>Rockwell Automation</td>
<td>Steven Chybowski</td>
</tr>
<tr>
<td>Rural Utilities Service</td>
<td>Trung Hiu</td>
</tr>
<tr>
<td>Safety and Forensic Enterprises, LLC</td>
<td>Loren Mills</td>
</tr>
<tr>
<td>Safety Behavior Analysis, Inc.</td>
<td>Shelley Waters Deppa</td>
</tr>
<tr>
<td>Sauder Woodworking Company</td>
<td>Gary Bell</td>
</tr>
<tr>
<td>Scaffold Industry Association</td>
<td>Dave Merrifield</td>
</tr>
<tr>
<td>Standard Register Corporation</td>
<td>Amy Martin</td>
</tr>
<tr>
<td></td>
<td>Linda LeBlanc (Alt.)</td>
</tr>
</tbody>
</table>
At the time it prepared this standard for Z535 Committee reaffirmation vote, Subcommittee Z535.1 on Safety Colors had the following members:

Donna Ehrmann, Co-Chair
Linda Moquet, Co-Chair
Paul Orr, Secretary

- Lewis Barbe, World Safety Organization
- Donna Ehrmann, National Association of Graphic and Product Identification Manufacturers
- William N. Hale, Hale Color Consultants, Inc.
- Road Heckman, RIT
- Edward Karl, Applied Materials
- Loren Mills, Safety and Forensic Enterprises, LLC
- Linda Moquet, P&G Duracell, Inc.
- Geoffrey Peckham, Clarion Safety Systems, LLC
- Daniel Taylor, CNH
This page intentionally left blank.
For Safety Colors

1 Introduction
Color codes used on safety signs, labels and tags, as well as for the identification and location of fire extinguishers, first aid kits, traffic aisleways, stumbling and tripping hazards, etc., have been developed in the past by a large number of industrial firms and other organizations.

Although these color codes give satisfaction to those using them, they suffer from lack of uniformity. As a result, spontaneity of action in times of emergency can be lost, particularly by employees who have moved from one plant to another, when each has a different system.

This standard sets forth the specifications and test methods for safety colors in order to establish uniformity of safety color coding. As a result, the safety colors are the same as those used with:

- ANSI Z535.2 American National Standard Environmental and Facility Safety Signs
- ANSI Z535.3 American National Standard Criteria for Safety Symbols
- ANSI Z535.4 American National Standard Product Safety Signs and Labels
- ANSI Z535.5 American National Standard Safety Tags and Barricade Tapes (for Temporary Hazards)
- ANSI Z535.6 American National Standard Product Safety Information in Product Manuals, Instructions, and Other Collateral Material

Too many colors appearing simultaneously in the visual field can be both confusing and fatiguing. Study each location to minimize the number of markings, thereby enhancing the perceptual impact of the markings used.

2 Scope
This standard sets forth the technical definitions, color standards, and color tolerances for safety colors.

3 Purpose
3.1 Intent
The intent of ANSI Z535.1 is to establish a standard for safety colors that will alert and inform persons to take precautionary action or other appropriate action in the presence of hazards.

3.2 Engineering or administrative controls
This standard is not a substitute for engineering or administrative controls, including training, to eliminate identifiable hazards.