Wheelchair seating —

Part 6:
Simulated use and determination of the changes in properties of seat cushions

Sièges de fauteuils roulants —
Partie 6: Simulation d’utilisation et détermination des changements de propriétés des coussins de sièges
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Heat and humidity</td>
<td>22</td>
</tr>
<tr>
<td>28.1</td>
<td>Rationale</td>
<td>22</td>
</tr>
<tr>
<td>28.2</td>
<td>Test method</td>
<td>23</td>
</tr>
<tr>
<td>28.3</td>
<td>Method of calculation</td>
<td>23</td>
</tr>
<tr>
<td>28.4</td>
<td>Test report</td>
<td>23</td>
</tr>
<tr>
<td>29</td>
<td>Laundering</td>
<td>23</td>
</tr>
<tr>
<td>29.1</td>
<td>Rationale</td>
<td>23</td>
</tr>
<tr>
<td>29.2</td>
<td>Test method</td>
<td>23</td>
</tr>
<tr>
<td>29.2.1</td>
<td>Cover of cushion laundering</td>
<td>23</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Interior cushion laundering</td>
<td>23</td>
</tr>
<tr>
<td>29.3</td>
<td>Method of calculation</td>
<td>23</td>
</tr>
<tr>
<td>29.4</td>
<td>Test report</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>Urinary soiling with cyclic loading</td>
<td>24</td>
</tr>
<tr>
<td>30.1</td>
<td>Rationale</td>
<td>24</td>
</tr>
<tr>
<td>30.2</td>
<td>Test method</td>
<td>24</td>
</tr>
<tr>
<td>30.3</td>
<td>Method of calculation</td>
<td>24</td>
</tr>
<tr>
<td>30.4</td>
<td>Test report</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>UV and ozone exposure</td>
<td>24</td>
</tr>
<tr>
<td>31.1</td>
<td>Rationale</td>
<td>24</td>
</tr>
<tr>
<td>31.2</td>
<td>Test method</td>
<td>24</td>
</tr>
<tr>
<td>31.3</td>
<td>Method of calculation</td>
<td>24</td>
</tr>
<tr>
<td>31.4</td>
<td>Test report</td>
<td>25</td>
</tr>
<tr>
<td>32</td>
<td>Stage 3: Post-aged cushion testing</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>Method of calculations</td>
<td>25</td>
</tr>
<tr>
<td>34</td>
<td>Test report</td>
<td>26</td>
</tr>
</tbody>
</table>

Annex A (informative)

Influences that drive changes in seat cushion performance

Bibliography
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 173, Assistive products for persons with disability, Subcommittee SC 1, Wheelchairs.

ISO 16840 consists of the following parts, under the general title Wheelchair seating:

— Part 1: Vocabulary, reference axis convention and measures for body segments, posture and postural support surfaces

— Part 2: Determination of physical and mechanical characteristics of devices intended to manage tissue integrity — Seat cushions

— Part 3: Determination of static, impact and repetitive load strengths for postural support devices

— Part 4: Seating systems for use in motor vehicles

— Part 6: Simulated use and determination of the changes in properties of seat cushions

— Part 10: Resistance to ignition of non-integrated seat and back support cushions — Part 10: Requirements and test methods

— Part 11: Determination of perspiration dissipation characteristics of seat cushions intended to manage tissue integrity [Technical Specification]

Future parts dealing with methods for determining heat and water vapour characteristics and clinical guidelines for the measurement of postural support surfaces and body segments are planned.
Introduction

Wheelchair seat cushions provide improved support and injury prevention for the user. They are used by those with a variety of needs and by those with varying degrees of disability. Wheelchair seat cushions are prescribed based on their ability to perform under a range of circumstances, from intermittent use to robust sports use, and use by those with regular incontinence. Each application presents different conditions that can change the performance of the cushion and can expose the user to hidden risks. Standards for the evaluation of wheelchair cushions under a wide range of conditions are paramount. This part of ISO 16840 describes test methods that characterize the changes in physical and mechanical properties of seat cushions based on their age and use. The standard offers a suite of test methods, not all of which will be appropriate for all cushions, and therefore, the manufacturer is to determine which are appropriate for their cushion construction and use. It is designed to provide a close approximation of the changes that have been observed to occur over time. The protocol consists of performing tests to characterize the properties of a new cushion, subjecting the cushion to multiple simulated aging processes, then re-testing the cushion properties. Changes that occur are reported.

Prior to following the protocol, the manufacturer is to recommend the environment of use of the cushion, the anticipated failure modes of the cushion, and the cushion characterization tests appropriate for their product. Just as not all tests are appropriate for all cushions, the exposures within the tests might not be appropriate for all cushions. Tests may be modified or eliminated based on suitability for materials, architecture, or use conditions, i.e. a rotational component could be added to the cyclic loading, generating additional wear. For some materials, 70 °C can change the failure mode from typical to temperature-based, depending on the material properties of this cushion. In such a case, 50 °C may be selected to accelerate the aging of the cushion over a longer period of time to simulate a failure more typical of aging. Any deviations are to be documented.

These tests are not appropriate for ranking or scoring cushions or for directly matching these characteristics with the requirements of individual users. While the results of these tests can aid the clinician in providing care to the patient through selection of surface characteristics that will, in their professional judgment, aid the care, treatment, or recovery of the patient, these tests are not to be interpreted as prescriptive in and of themselves. The link to clinical efficacy, although implied, has not been validated. It is intended that this part of ISO 16840 will evolve when clinical relevance is confirmed. Further parts of the ISO 16840 series will describe test methods for characterizing other surface characteristics that can further aid the clinician in the care and treatment of patients.
Contents

Foreword vi
Introduction vii
1 Scope 1
2 Normative references 1
3 Terms and definitions 1
4 Symbols and abbreviated terms 5
5 Apparatus for characterizing and ageing cushions 5
5.1 Apparatus for characterizing cushions 5
5.2 Apparatus for aging cushions 6
6 Test environment 7
7 Preparation and setup of cushion 7
8 Selection and order of testing 7
8.1 Testing consists of three stages 7
9 Envelopment 8
9.1 Rationale 8
9.2 Test method and reporting 8
10 Column buckling 8
10.1 Rationale 8
10.2 Test method 9
10.3 Method of calculation 9
10.4 Test report 9
11 Heat and humidity 9
11.1 Rationale 9
11.2 Test method 9
11.3 Method of calculation 10
11.4 Test report 10
12 Heated indenter compression set 11
12.1 Rationale 11
12.2 Test method 11
12.3 Method of calculation 11
12.4 Test report 11
13 Impact damping under normal conditions 12
13.1 Rationale 12
13.2 Test method 12
14 Interface pressure measurement test (pressure mapping) 12
14.1 Rationale 12
14.2 Test method 12
14.3 Method of calculation 12
14.4 Test report 13
15 Lateral stiffness 13
15.1 Rationale 13
15.2 Test method 13
15.3 Method of calculation 14
15.4 Test report 14
16 Leak 14
16.1 Rationale 14
16.2 Test method 14

© ISO 2015 – All rights reserved
16.3 Test report ... 14

17 Loaded contour depth and overload deflection ... 14
17.1 Rationale ... 14
17.2 Test method .. 14
17.3 Method of calculation .. 14

18 Hysteresis test ... 15
18.1 Rationale ... 15
18.2 Test method .. 15

19 Sliding resistance .. 15
19.1 Rationale ... 15
19.2 Test method .. 15
19.3 Method of calculation .. 15
19.4 Test report ... 15

20 10 % force deflection ... 16
20.1 Rationale ... 16
20.2 Test method .. 16
20.3 Method of calculation .. 16

21 Stage 2: Simulated age testing ... 16

22 Accelerated aging ... 17
22.1 Rationale ... 17
22.2 Test method .. 17
22.2.1 70 °C accelerated aging procedure 17
22.2.2 50 °C modified accelerated aging procedure (for cushions made with hydrogels or other materials not intended for high temperature exposure) 18
22.3 Method of calculation .. 18
22.4 Test report ... 18

23 Bacterial soiling ... 18
23.1 Rationale ... 18
23.2 Test method .. 18
23.2.1 Preparation of bacterial soiling broth 18
23.2.2 Bacterial exposure .. 19
23.3 Method of calculation .. 19
23.4 Test report ... 19

24 Cold exposure ... 20
24.1 Rationale ... 20
24.2 Test method .. 20
24.3 Method of calculation .. 20
24.4 Test report ... 20

25 Cyclic loading at elevated temperature ... 20
25.1 Rationale ... 20
25.2 Test method .. 20
25.3 Method of calculation .. 21
25.4 Test report ... 21

26 Disinfection ... 21
26.1 Rationale ... 21
26.2 Test method .. 21
26.2.1 Cover of cushion disinfection 21
26.2.2 Interior cushion disinfection 21

27 Faecal soiling with cyclic loading ... 22
27.1 Rationale ... 22
27.2 Test method .. 22
27.3 Method of calculation .. 22
27.4 Test report ... 22
ISO 16840-6:2015(E)

This is a preview of "ISO 16840-6:2015". Click here to purchase the full version from the ANSI store.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Heat and humidity</td>
<td>22</td>
</tr>
<tr>
<td>28.1</td>
<td>Rationale</td>
<td>22</td>
</tr>
<tr>
<td>28.2</td>
<td>Test method</td>
<td>23</td>
</tr>
<tr>
<td>28.3</td>
<td>Method of calculation</td>
<td>23</td>
</tr>
<tr>
<td>28.4</td>
<td>Test report</td>
<td>23</td>
</tr>
<tr>
<td>29</td>
<td>Laundering</td>
<td>23</td>
</tr>
<tr>
<td>29.1</td>
<td>Rationale</td>
<td>23</td>
</tr>
<tr>
<td>29.2</td>
<td>Test method</td>
<td>23</td>
</tr>
<tr>
<td>29.2.1</td>
<td>Cover of cushion laundering</td>
<td>23</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Interior cushion laundering</td>
<td>23</td>
</tr>
<tr>
<td>29.3</td>
<td>Method of calculation</td>
<td>23</td>
</tr>
<tr>
<td>29.4</td>
<td>Test report</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>Urinary soiling with cyclic loading</td>
<td>24</td>
</tr>
<tr>
<td>30.1</td>
<td>Rationale</td>
<td>24</td>
</tr>
<tr>
<td>30.2</td>
<td>Test method</td>
<td>24</td>
</tr>
<tr>
<td>30.3</td>
<td>Method of calculation</td>
<td>24</td>
</tr>
<tr>
<td>30.4</td>
<td>Test report</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>UV and ozone exposure</td>
<td>24</td>
</tr>
<tr>
<td>31.1</td>
<td>Rationale</td>
<td>24</td>
</tr>
<tr>
<td>31.2</td>
<td>Test method</td>
<td>24</td>
</tr>
<tr>
<td>31.3</td>
<td>Method of calculation</td>
<td>25</td>
</tr>
<tr>
<td>31.4</td>
<td>Test report</td>
<td>25</td>
</tr>
<tr>
<td>32</td>
<td>Stage 3: Post-aged cushion testing</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>Method of calculations</td>
<td>25</td>
</tr>
<tr>
<td>34</td>
<td>Test report</td>
<td>26</td>
</tr>
<tr>
<td>Annex A</td>
<td>Influences that drive changes in seat cushion performance</td>
<td>27</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 173, Assistive products for persons with disability, Subcommittee SC 1, Wheelchairs.

ISO 16840 consists of the following parts, under the general title Wheelchair seating:

— Part 1: Vocabulary, reference axis convention and measures for body segments, posture and postural support surfaces
— Part 2: Determination of physical and mechanical characteristics of devices intended to manage tissue integrity — Seat cushions
— Part 3: Determination of static, impact and repetitive load strengths for postural support devices
— Part 4: Seating systems for use in motor vehicles
— Part 6: Simulated use and determination of the changes in properties of seat cushions
— Part 10: Resistance to ignition of non-integrated seat and back support cushions — Part 10: Requirements and test methods
— Part 11: Determination of perspiration dissipation characteristics of seat cushions intended to manage tissue integrity [Technical Specification]

Future parts dealing with methods for determining heat and water vapour characteristics and clinical guidelines for the measurement of postural support surfaces and body segments are planned.
Introduction

Wheelchair seat cushions provide improved support and injury prevention for the user. They are used by those with a variety of needs and by those with varying degrees of disability. Wheelchair seat cushions are prescribed based on their ability to perform under a range of circumstances, from intermittent use to robust sports use, and use by those with regular incontinence. Each application presents different conditions that can change the performance of the cushion and can expose the user to hidden risks. Standards for the evaluation of wheelchair cushions under a wide range of conditions are paramount.

This part of ISO 16840 describes test methods that characterize the changes in physical and mechanical properties of seat cushions based on their age and use. The standard offers a suite of test methods, not all of which will be appropriate for all cushions, and therefore, the manufacturer is to determine which are appropriate for their cushion construction and use. It is designed to provide a close approximation of the changes that have been observed to occur over time. The protocol consists of performing tests to characterize the properties of a new cushion, subjecting the cushion to multiple simulated aging processes, then re-testing the cushion properties. Changes that occur are reported.

Prior to following the protocol, the manufacturer is to recommend the environment of use of the cushion, the anticipated failure modes of the cushion, and the cushion characterization tests appropriate for their product. Just as not all tests are appropriate for all cushions, the exposures within the tests might not be appropriate for all cushions. Tests may be modified or eliminated based on suitability for materials, architecture, or use conditions, i.e. a rotational component could be added to the cyclic loading, generating additional wear. For some materials, 70 °C can change the failure mode from typical to temperature-based, depending on the material properties of this cushion. In such a case, 50 °C may be selected to accelerate the aging of the cushion over a longer period of time to simulate a failure more typical of aging. Any deviations are to be documented.

These tests are not appropriate for ranking or scoring cushions or for directly matching these characteristics with the requirements of individual users. While the results of these tests can aid the clinician in providing care to the patient through selection of surface characteristics that will, in their professional judgment, aid the care, treatment, or recovery of the patient, these tests are not to be interpreted as prescriptive in and of themselves. The link to clinical efficacy, although implied, has not been validated. It is intended that this part of ISO 16840 will evolve when clinical relevance is confirmed. Further parts of the ISO 16840 series will describe test methods for characterizing other surface characteristics that can further aid the clinician in the care and treatment of patients.