Health informatics — Privilege management and access control —

Part 3: Implementations

Informatique de santé — Gestion de privilèges et contrôle d’accès —

Partie 3: Mises en œuvre
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Abbreviated terms</td>
<td>13</td>
</tr>
<tr>
<td>5 Structures and services for privilege management and access control</td>
<td>15</td>
</tr>
<tr>
<td>6 Interpretation of ISO 22600-2 formal models in healthcare settings</td>
<td>18</td>
</tr>
<tr>
<td>7 Concept representation for health information systems</td>
<td>18</td>
</tr>
<tr>
<td>7.1 Overview</td>
<td>18</td>
</tr>
<tr>
<td>7.2 Domain languages</td>
<td>19</td>
</tr>
<tr>
<td>7.3 OCL constraint modelling</td>
<td>20</td>
</tr>
<tr>
<td>7.4 Other constraint representations</td>
<td>20</td>
</tr>
<tr>
<td>8 Consent</td>
<td>22</td>
</tr>
<tr>
<td>8.1 Overview</td>
<td>22</td>
</tr>
<tr>
<td>8.2 Patient consent</td>
<td>22</td>
</tr>
<tr>
<td>8.3 Patient consent management</td>
<td>22</td>
</tr>
<tr>
<td>9 Emergency access</td>
<td>22</td>
</tr>
<tr>
<td>10 Refinement of the control model</td>
<td>23</td>
</tr>
<tr>
<td>11 Refinement of the delegation model</td>
<td>23</td>
</tr>
<tr>
<td>Annex A (informative) Privilege management infrastructure</td>
<td>24</td>
</tr>
<tr>
<td>Annex B (informative) Attribute certificate extensions</td>
<td>60</td>
</tr>
<tr>
<td>Annex C (informative) Terminology comparison</td>
<td>62</td>
</tr>
<tr>
<td>Annex D (informative) Examples for policy management and policy</td>
<td>63</td>
</tr>
<tr>
<td>representation</td>
<td>66</td>
</tr>
<tr>
<td>Bibliography</td>
<td>66</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 215, Health informatics.

This first edition of ISO 22600-3 cancels and replaces ISO/TS 22600-3:2009, which has been technically revised.

ISO 22600 consists of the following parts, under the general title Health informatics — Privilege management and access control:

— Part 1: Overview and policy management
— Part 2: Formal models
— Part 3: Implementations
Introduction

The distributed architecture of shared care information systems supporting service-oriented architecture (SOA) is increasingly based on corporate networks and virtual private networks. For meeting the interoperability challenge, the use of standardized user interfaces, tools, and protocols, which ensures platform independence, but also the number of really open information systems, is rapidly growing during the last couple of years.

As a common situation today, hospitals are supported by several vendors providing different applications, which are not able to communicate authentication and authorization since each has its own way of handling these functions. For achieving an integrated scenario, it takes a remarkable amount of money, time, and efforts to get users and changing organizational environments dynamically mapped before starting communication and cooperation. Resources required for the development and maintenance of security functions grow exponentially with the number of applications, with the complexity of organizations towards a regional, national, or even international level, and with the flexibility of users playing multiple roles, sometimes even simultaneously.

The situation becomes even more challenging when inter-organizational communications happens, thereby crossing security policy domain boundaries. Moving from one healthcare centre to another or from country to country, different rules for privileges and their management can apply to similar types of users, both for execution of particular functions and for access to information. The policy differences between these domains have to be bridged automatically or through policy agreements, defining sets of rules followed by the parties involved, for achieving interoperability.

Another challenge to be met is how to improve the quality of care by using IT without infringing the privacy of the patient. To provide physicians with adequate information about the patient, a virtual electronic health care record is required which makes it possible to keep track of all the activities belonging to one patient regardless of where and by whom they have been performed and documented. In such an environment, a generic model or specific agreement between the parties for managing privileges and access control including the patient or its representative is needed.

Besides a diversity of roles and responsibilities, typical for any type of large organization, also ethical and legal aspects in the healthcare scenario due to the sensitivity of person-related health information managed and its personal and social impact have to be considered.

Advanced solutions for privilege management and access control are required today already, but this challenge will even grow over the next couple of years. The reason is the increase of information exchanged between systems in order to fulfil the demands of health service providers at different care levels for having access to more and more patient-related information to ensure the quality and efficiency of patient's diagnosis and treatment, however combined with increased security and privacy risks.

The implementation of this International Standard might be currently too advanced and therefore not feasible in certain organizational and technical settings. For meeting the basic principle of best possible action, it is therefore very important that at least a policy agreement is written between the parties stating to progress towards this International Standard when any update/upgrade of the systems is intended. The level of formalization and granularity of policies and the objects these policies are bound to defines the solution maturity on a pathway towards the presented specification.

The policy agreement also has to contain defined differences in the security systems and agreed solutions on how to overcome the differences. For example, the authentication service and privileges of a requesting party at the responding site have to be managed according to the policy declared in the agreement. For that reason, information and service requester, as well as information and service provider on the one hand, and information and services requested and provided on the other hand, have to be grouped and classified in a limited number of concepts for enabling the specification of a limited number of solution categories. Based on that classification, claimant mechanisms, target sensitivity mechanisms, and policy specification and management mechanisms can be implemented. Once all parties have signed the policy agreement, the communication and information exchange can start with the existing systems if the parties can accept the risks. If there are unacceptable risks which have to be eliminated before the information exchange starts, they also have to be recorded in the policy agreement.
together with an action plan stating how these risks have to be removed. The policy agreement also has
to contain a time plan for this work and an agreement on how it has to be financed.

The documentation of the negotiation process is very important and provides the platform for the policy
agreement.

Privilege management and access control address security and privacy services required for
communication and cooperation, i.e. distributed use of health information. It also implies safety aspects,
professional standards, and legal and ethical issues. This International Standard introduces principles
and specifies services needed for managing privileges and access control. Cryptographic protocols are
out of the scope of this International Standard.

This three-part International Standard references existing architectural and security standards as well
as specifications in the healthcare area such as ISO, CEN, ASTM, OMG, W3C, etc., and endorses existing
appropriate standards or identifies enhancements or modifications or the need for new standards. It
comprises of:

— ISO 22600-1: describes the scenarios and the critical parameters in information exchange across
policy domains. It also gives examples of necessary documentation methods as the basis for the
policy agreement.

— ISO 22600-2: describes and explains, in a more detailed manner, the architectures and underlying
models for privilege management and access control which are necessary for secure information
sharing including the formal representation of policies.

— ISO 22600-3: describes examples of implementable specifications of application security services
and infrastructural services using different specification languages.

It accommodates policy bridging. It is based on a conceptual model where local authorization servers and
cross-border directory and policy repository services can assist access control in various applications
/software components). The policy repository provides information on rules for access to various
application functions based on roles and other attributes. The directory service enables identification
of the individual user. The granted access will be based on four aspects:

— the authenticated identification of principals (i.e. human users and objects that need to operate
under their own rights) involved;

— the rules for access to a specific information object including purpose of use;

— the rules regarding authorization attributes linked to the principal provided by the authorization
manager;

— the functions of the specific application.

This International Standard supports collaboration between several authorization managers that can
operate over organizational and policy borders.

This International Standard is strongly related to other ISO/TC 215 works such as ISO 17090 (all parts),
ISO 22857, ISO 21091, and ISO 21298.

This International Standard is meant to be read in conjunction with its complete set of associated
standards.

Based on the Unified Process, a three-dimensional architectural reference model has been derived for
defining the constraint models needed. The dimensions of the Generic Component Model used are the
domain axis, the decomposition/composition axis, and the axis describing the views on a system and its
components. For being future-proof, sustainable, flexible, portable, and scalable, only the constraining
process and the resulting security-related meta-models are presented. The instantiation and
implementation, e.g. the specification of mechanisms and encoding definitions, is a long-term process,
dedicated to other standards and projects or the vendor/provider community, respectively.
After shortly summarizing the basics of ISO 22600-2, the different ways of representing different levels of maturity with different levels of interoperability below the ideal situation of a semantically valid one are discussed.

For those different environments and levels, this part of ISO 22600 introduces examples for specializing and implementing the formal high-level models for architectural components based on ISO/IEC 10746 and defined in ISO 22600-2. These examples and related services are grouped in different Annexes.

The specifications are provided using derivatives of the Extensible Markup Language (XML), especially Security Assertion Markup Language (SAML) and Extensible Access Control Markup Language (XACML) specified by OASIS. Additional specifications are also presented in the traditional ASN.1 syntax.

This International Standard has been harmonized in essential parts with ASTM E2595-07.
Contents

Foreword ... iv
Introduction .. v
1 Scope ... 1
2 Normative references .. 1
3 Terms and definitions ... 1
4 Abbreviated terms .. 13
5 Structures and services for privilege management and access control 15
6 Interpretation of ISO 22600-2 formal models in healthcare settings 18
7 Concept representation for health information systems ... 18
 7.1 Overview .. 18
 7.2 Domain languages .. 19
 7.3 OCL constraint modelling 20
 7.4 Other constraint representations 20
8 Consent ... 22
 8.1 Overview .. 22
 8.2 Patient consent .. 22
 8.3 Patient consent management 22
9 Emergency access .. 22
10 Refinement of the control model .. 23
11 Refinement of the delegation model ... 23
Annex A (informative) Privilege management infrastructure .. 24
Annex B (informative) Attribute certificate extensions ... 60
Annex C (informative) Terminology comparison ... 62
Annex D (informative) Examples for policy management and policy representation 63
Bibliography ... 66

© ISO 2014 – All rights reserved
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 215, Health informatics.

This first edition of ISO 22600-3 cancels and replaces ISO/TS 22600-3:2009, which has been technically revised.

ISO 22600 consists of the following parts, under the general title Health informatics — Privilege management and access control:

— Part 1: Overview and policy management

— Part 2: Formal models

— Part 3: Implementations
The distributed architecture of shared care information systems supporting service-oriented architecture (SOA) is increasingly based on corporate networks and virtual private networks. For meeting the interoperability challenge, the use of standardized user interfaces, tools, and protocols, which ensures platform independence, but also the number of really open information systems, is rapidly growing during the last couple of years.

As a common situation today, hospitals are supported by several vendors providing different applications, which are not able to communicate authentication and authorization since each has its own way of handling these functions. For achieving an integrated scenario, it takes a remarkable amount of money, time, and efforts to get users and changing organizational environments dynamically mapped before starting communication and cooperation. Resources required for the development and maintenance of security functions grow exponentially with the number of applications, with the complexity of organizations towards a regional, national, or even international level, and with the flexibility of users playing multiple roles, sometimes even simultaneously.

The situation becomes even more challenging when inter-organizational communications happens, thereby crossing security policy domain boundaries. Moving from one healthcare centre to another or from country to country, different rules for privileges and their management can apply to similar types of users, both for execution of particular functions and for access to information. The policy differences between these domains have to be bridged automatically or through policy agreements, defining sets of rules followed by the parties involved, for achieving interoperability.

Another challenge to be met is how to improve the quality of care by using IT without infringing the privacy of the patient. To provide physicians with adequate information about the patient, a virtual electronic health care record is required which makes it possible to keep track of all the activities belonging to one patient regardless of where and by whom they have been performed and documented. In such an environment, a generic model or specific agreement between the parties for managing privileges and access control including the patient or its representative is needed.

Besides a diversity of roles and responsibilities, typical for any type of large organization, also ethical and legal aspects in the healthcare scenario due to the sensitivity of person-related health information managed and its personal and social impact have to be considered.

Advanced solutions for privilege management and access control are required today already, but this challenge will even grow over the next couple of years. The reason is the increase of information exchanged between systems in order to fulfil the demands of health service providers at different care levels for having access to more and more patient-related information to ensure the quality and efficiency of patient’s diagnosis and treatment, however combined with increased security and privacy risks.

The implementation of this International Standard might be currently too advanced and therefore not feasible in certain organizational and technical settings. For meeting the basic principle of best possible action, it is therefore very important that at least a policy agreement is written between the parties stating to progress towards this International Standard when any update/upgrade of the systems is intended. The level of formalization and granularity of policies and the objects these policies are bound to defines the solution maturity on a pathway towards the presented specification.

The policy agreement also has to contain defined differences in the security systems and agreed solutions on how to overcome the differences. For example, the authentication service and privileges of a requesting party at the responding site have to be managed according to the policy declared in the agreement. For that reason, information and service requester, as well as information and service provider on the one hand, and information and services requested and provided on the other hand, have to be grouped and classified in a limited number of concepts for enabling the specification of a limited number of solution categories. Based on that classification, claimant mechanisms, target sensitivity mechanisms, and policy specification and management mechanisms can be implemented. Once all parties have signed the policy agreement, the communication and information exchange can start with the existing systems if the parties can accept the risks. If there are unacceptable risks which have to be eliminated before the information exchange starts, they also have to be recorded in the policy agreement.
The policy agreement also has to contain a time plan for this work and an agreement on how it has to be financed.

The documentation of the negotiation process is very important and provides the platform for the policy agreement.

Privilege management and access control address security and privacy services required for communication and cooperation, i.e. distributed use of health information. It also implies safety aspects, professional standards, and legal and ethical issues. This International Standard introduces principles and specifies services needed for managing privileges and access control. Cryptographic protocols are out of the scope of this International Standard.

This three-part International Standard references existing architectural and security standards as well as specifications in the healthcare area such as ISO, CEN, ASTM, OMG, W3C, etc., and endorses existing appropriate standards or identifies enhancements or modifications or the need for new standards. It comprises of:

— ISO 22600-1: describes the scenarios and the critical parameters in information exchange across policy domains. It also gives examples of necessary documentation methods as the basis for the policy agreement.

— ISO 22600-2: describes and explains, in a more detailed manner, the architectures and underlying models for privilege management and access control which are necessary for secure information sharing including the formal representation of policies.

— ISO 22600-3: describes examples of implementable specifications of application security services and infrastructural services using different specification languages.

It accommodates policy bridging. It is based on a conceptual model where local authorization servers and cross-border directory and policy repository services can assist access control in various applications (software components). The policy repository provides information on rules for access to various application functions based on roles and other attributes. The directory service enables identification of the individual user. The granted access will be based on four aspects:

— the authenticated identification of principals (i.e. human users and objects that need to operate under their own rights) involved;

— the rules for access to a specific information object including purpose of use;

— the rules regarding authorization attributes linked to the principal provided by the authorization manager;

— the functions of the specific application.

This International Standard supports collaboration between several authorization managers that can operate over organizational and policy borders.

This International Standard is strongly related to other ISO/TC 215 works such as ISO 17090 (all parts), ISO 22857, ISO 21091, and ISO 21298.

This International Standard is meant to be read in conjunction with its complete set of associated standards.

Based on the Unified Process, a three-dimensional architectural reference model has been derived for defining the constraint models needed. The dimensions of the Generic Component Model used are the domain axis, the decomposition/composition axis, and the axis describing the views on a system and its components. For being future-proof, sustainable, flexible, portable, and scalable, only the constraining process and the resulting security-related meta-models are presented. The instantiation and implementation, e.g. the specification of mechanisms and encoding definitions, is a long-term process, dedicated to other standards and projects or the vendor/provider community, respectively.
After shortly summarizing the basics of ISO 22600-2, the different ways of representing different levels of maturity with different levels of interoperability below the ideal situation of a semantically valid one are discussed.

For those different environments and levels, this part of ISO 22600 introduces examples for specializing and implementing the formal high-level models for architectural components based on ISO/IEC 10746 and defined in ISO 22600-2. These examples and related services are grouped in different Annexes.

The specifications are provided using derivates of the Extensible Markup Language (XML), especially Security Assertion Markup Language (SAML) and Extensible Access Control Markup Language (XACML) specified by OASIS. Additional specifications are also presented in the traditional ASN.1 syntax.

This International Standard has been harmonized in essential parts with ASTM E2595-07.