Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

Biomaterials and Biomolecules for TEMPs

Biomaterials and Biomolecules for TEMPs


ASTM F2347-15

Standard Guide for Characterization and Testing of Hyaluronan as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications

1.1 This guide covers the evaluation of hyaluronan suitable for use in biomedical or pharmaceutical applications, or both, including, but not limited to, Tissue Engineered Medical Products (TEMPs). 1.2 This guide addresses key parameters relevant to the characterization and purity of hyaluronan. 1.3 As with any material, some characteristics of hyaluronan may be altered by processing techniques, such as cross-linking and sterilization, required for the production of a specific formulation or device. Therefore, properties of fabricated forms of this polymer should be evaluated using test methods that are appropriate to ensure safety and efficacy and are not addressed in this guide. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.


ASTM F2791-15

Standard Guide for Assessment of Surface Texture of Non-Porous Biomaterials in Two Dimensions

1.1 This guide describes some of the more common methods that are available for measuring the topographical features of a surface and provides an overview of the parameters that are used to quantify them. Being able to reliably derive a set of parameters that describe the texture of biomaterial surfaces is a key aspect in the manufacture of safe and effective implantable medical devices that have the potential to trigger an adverse biological reaction in situ. 1.2 This guide is not intended to apply to porous structures with average pore dimensions in excess of approximately 50 nm (0.05 m). 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F2064-17

Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications

1.1 This guide covers the evaluation of alginates suitable for use in biomedical or pharmaceutical applications, or both, including, but not limited to, Tissue Engineered Medical Products (TEMPs). 1.2 This guide addresses key parameters relevant for the functionality, characterization, and purity of alginates. 1.3 As with any material, some characteristics of alginates may be altered by processing techniques (such as molding, extrusion, machining, assembly, sterilization, and so forth) required for the production of a specific part or device. Therefore, properties of fabricated forms of this polymer should be evaluated using test methods that are appropriate to ensure safety and efficacy and are not addressed in this guide. 1.4 Warning Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2952-14

Standard Guide for Determining the Mean Darcy Permeability Coefficient for a Porous Tissue Scaffold

1.1 This guide describes test methods suitable for determining the mean Darcy permeability coefficient for a porous tissue scaffold, which is a measure of the rate at which a fluid, typically air or water, flows through it in response to an applied pressure gradient. This information can be used to optimize the structure of tissue scaffolds, to develop a consistent manufacturing process, and for quality assurance purposes. 1.2 The method is generally non-destructive and non-contaminating. 1.3 The method is not suitable for structures that are easily deformed or damaged. Some experimentation is usually required to assess the suitability of permeability testing for a particular material/structure and to optimize the experimental conditions. 1.4 Measures of permeability should not be considered as definitive metrics of the structure of porous tissue scaffolds and should complement measures obtained by other investigative techniques e.g., scanning electron microscopy, gas flow porometry and micro-computer x-ray tomography (ASTM F2450). 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3089-14

Standard Guide for Characterization and Standardization of Polymerizable Collagen-Based Products and Associated Collagen-Cell Interactions

1.1 This guide for characterizing polymerizable collagens is intended to provide characteristics, properties, test methods, and standardization approaches for use by producers, manufacturers, and researchers to identify specific collagen polymer formulations and associated self-assembled collagen-based products produced with these formulations. This guide will focus on the characterization of polymer forms of Type I collagen, which is the most abundant collagen in mammalian connective tissues and organs, including skin, bone, tendon, and blood vessels. Type I collagen may be derived from a variety of sources including, but not limited to, animal or cadaveric tissues, cell culture, recombinant, and chemical synthesis. This guide is intended to focus on purified Type I collagen polymers as a starting material for wound and hemostatic dressings, surgical implants, substrates for tissue-engineered medical products (TEMPs), delivery vehicles for therapeutic cells or molecules, and 3D in-vitro tissue systems for basic research, drug development, and toxicity testing. Polymerizable or self-assembly implies that the collagen composition exhibits spontaneous macromolecular assembly from its components in the absence of the addition of exogenous factors including cross-linking agents. Self-assembling collagen polymers may include, but are not limited to: (1) tissue-derived atelocollagens, monomers, and oligomers; (2) collagen proteins and peptides produced using recombinant technology; and (3) chemically synthesized collagen mimetic peptides. It should be noted that the format of associated self-assembled collagen-based products also will vary and may include injectable solutions that polymerize in situ as well as preformed sheets, particles, spheres, fibers, sponges, matrices/gels, coatings, films, and other forms. This guide may serve as a template for characterization and standardization of other fibrillar collagen types that demonstrate polymerization or self-assembly. 1.2 The ability of self-assembled collagen materials to guide cellular responses through provision of cellular adhesion and proteolytic domains as well as physical constraints (for example, structural, cell-matrix traction force) has been well documented through extensive clinical (1, 2) 2 and basic research studies (3, 4) . The biocompatibility and appropriateness of use for a specific application(s) is the responsibility of the product manufacturer. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 Warning Mercury has been designated by the Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and the EPA website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law. 1.5 The following precautionary caveat pertains only to the test method portion, Section 5, of this guide. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F2150-19

Standard Guide for Characterization and Testing of Biomaterial Scaffolds Used in Regenerative Medicine and Tissue-Engineered Medical Products

1.1 This guide is a resource of currently available test methods for the characterization of the compositional and structural aspects of biomaterial scaffolds used in the development and manufacture of regenerative medicine and tissue-engineered medical products (TEMPs). 1.2 The test methods contained herein guide characterization of the bulk physical, chemical, mechanical, and surface properties of a scaffold construct. Such properties may be important for the success of a TEMP, especially if the property affects cell retention, activity and organization, the delivery of bioactive agents, or the biocompatibility and bioactivity within the final product. 1.3 This guide may be used in the selection of appropriate test methods for the generation of an original equipment manufacture (OEM) specification. This guide also may be used to characterize the scaffold component of a finished medical product. 1.4 This guide is intended to be used in conjunction with appropriate characterization(s) and evaluation(s) of any raw or starting material(s) used in the fabrication of the scaffold, such as described in Guide F2027 . 1.5 This guide addresses natural, synthetic, or combination scaffold materials with or without bioactive agents or biological activity. This guide does not address the characterization or release profiles of any biomolecules, cells, drugs, or bioactive agents that are used in combination with the scaffold, but may be used to address the effects on other (e.g., structural) properties as a result of such release. A determination of the suitability of a particular starting material and/or finished scaffold structure to a specific cell type and/or tissue engineering application is essential, but will require additional in vitro and/or in vivo evaluations considered to be outside the scope of this guide. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2602-18

Standard Test Method for Determining the Molar Mass of Chitosan and Chitosan Salts by Size Exclusion Chromatography with Multi-angle Light Scattering Detection (SEC-MALS)

1.1 This test method covers the determination of the molar mass of chitosan and chitosan salts intended for use in biomedical and pharmaceutical applications as well as in tissue engineered medical products (TEMPs) by size exclusion chromatography with multi-angle laser light scattering detection (SEC-MALS). A guide for the characterization of chitosan salts has been published as Guide F2103 . 1.2 Chitosan and chitosan salts used in TEMPs should be well characterized, including the molar mass and polydispersity (molar mass distribution) in order to ensure uniformity and correct functionality in the final product. This test method will assist end users in choosing the correct chitosan for their particular application. Chitosan may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2131-21

Standard Test Method for In Vitro Biological Activity of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Using the W-20 Mouse Stromal Cell Line

1.1 This test method describes the method used and the calculation of results for the determination of the in-vitro biological activity of rhBMP-2 using the mouse stromal cell line W-20 clone 17 (W-20-17). This clone was derived from bone marrow stromal cells of the W++ mouse strain. 2 1.2 This test method (assay) has been qualified and validated based upon the International Committee on Harmonization assay validation guidelines 3 (with the exception of interlaboratory precision) for the assessment of the biological activity of rhBMP-2. The relevance of this in-vitro test method to in-vivo bone formation has also been studied. The measured response in the W-20 bioassay, alkaline phosphatase induction, has been correlated with the ectopic bone-forming capacity of rhBMP-2 in the in-vivo Use Test (UT). rhBMP-2 that was partially or fully inactivated by targeted peracetic acid oxidation of the two methionines was used as a tool to compare the activities. Oxidation of rhBMP-2 with peracetic acid was shown to be specifically targeted to the methionines by peptide mapping and mass spectrometry. These methionines reside in a hydrophobic receptor binding pocket on rhBMP-2. Oxidized samples were compared alongside an incubation control and a native control. The 62, 87, 98, and 100 % oxidized samples had W-20 activity levels of 62, 20, 7, and 5 %, respectively. The incubation and native control samples maintained 100 % activity. Samples were evaluated in the UT and showed a similar effect of inactivation on bone-forming activity. The samples with 62 % and 20 % activity in the W-20 assay demonstrated reduced levels of bone formation, similar in level with the reduction in W-20 specific activity, relative to the incubation control. Little or no ectopic bone was formed in the 7 and 5 % active rhBMP-2 implants. 1.3 Thus, modifications to the rhBMP-2 molecule in the receptor binding site decrease the activity in both the W-20 and UT assays. These data suggest that a single receptor binding domain on rhBMP-2 is responsible for both in-vitro and in-vivo activity and that the W-20 bioassay is a relevant predictor of the bone-forming activity of rhBMP-2. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2603-06(2020)

Standard Guide for Interpreting Images of Polymeric Tissue Scaffolds

1.1 This guide covers the factors that need to be considered in obtaining and interpreting images of tissue scaffolds including technique selection, instrument resolution and image quality, quantification and sample preparation. 1.2 The information in this guide is intended to be applicable to porous polymer-based tissue scaffolds, including naturally derived materials such as collagen. However, some materials (both synthetic and natural) may require unique or varied sample preparation methods that are not specifically covered in this guide. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2259-10(2012)e1

Standard Test Method for Determining the Chemical Composition and Sequence in Alginate by Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy

1.1 This test method covers the determination of the composition and monomer sequence of alginate intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR ( 1 H NMR). A guide for the characterization of alginate has been published as Guide F2064 . 1.2 Alginate, a linear polymer composed of ß-D-mannuronate (M) and its C-5 epimer a-L-guluronate (G) linked by ß-(1- 4) glycosidic bonds, is characterized by calculating parameters such as mannuronate/guluronate (M/G) ratio, guluronic acid content (G-content), and average length of blocks of consecutive G monomers (that is, N G 1 ). Knowledge of these parameters is important for an understanding of the functionality of alginate in TEMP formulations and applications. This test method will assist end users in choosing the correct alginate for their particular application. Alginate may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F2260-18

Standard Test Method for Determining Degree of Deacetylation in Chitosan Salts by Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy

1.1 This test method covers the determination of the degree of deacetylation in chitosan and chitosan salts intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR ( 1 H NMR). A guide for the characterization of chitosan salts has been published as Guide F2103 . 1.2 The test method is applicable for determining the degree of deacetylation (% DDA) of chitosan chloride and chitosan glutamate salts and is valid for % DDA values from 50 up to and including 99. It is simple, rapid, and suitable for routine use. Knowledge of the degree of deacetylation is important for an understanding of the functionality of chitosan salts in TEMP formulations and applications. This test method will assist end users in choosing the correct chitosan for their particular application. Chitosan salts may have utility in drug delivery applications, as scaffold or matrix material, and in cell and tissue encapsulation applications. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2103-18

Standard Guide for Characterization and Testing of Chitosan Salts as Starting Materials Intended for Use in Biomedical and Tissue-Engineered Medical Product Applications

1.1 This guide covers the evaluation of chitosan salts suitable for use in biomedical or pharmaceutical applications, or both, including, but not limited to, tissue-engineered medical products (TEMPS). 1.2 This guide addresses key parameters relevant for the functionality, characterization, and purity of chitosan salts. 1.3 As with any material, some characteristics of chitosan may be altered by processing techniques (such as molding, extrusion, machining, assembly, sterilization, and so forth) required for the production of a specific part or device. Therefore, properties of fabricated forms of this polymer should be evaluated using test methods that are appropriate to ensure safety and efficacy. 1.4 Warning Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2212-20

Standard Guide for Characterization of Type I Collagen as Starting Material for Surgical Implants and Substrates for Tissue Engineered Medical Products (TEMPs)

1.1 This guide for characterizing collagen-containing biomaterials is intended to provide characteristics, properties, and test methods for use by producers, manufacturers, and researchers to more clearly identify the specific collagen materials used. With greater than 20 types of collagen and the different properties of each, a single document would be cumbersome. This guide will focus on the characterization of Type I collagen, which is the most abundant collagen in mammals, especially in skin and bone. Collagen isolated from these sources may contain other types of collagen, for example, Type III and Type V. This guide does not provide specific parameters for any collagen product or mix of products or the acceptability of those products for the intended use. The collagen may be from any source including, but not limited to, animal or cadaveric sources, human cell culture, or recombinant sources. The biological, immunological, or toxicological properties of the collagen may vary, depending on the source material. The properties of the collagen prepared from each of the above sources must be thoroughly investigated, as the changes in the collagen properties as a function of source materials is not thoroughly understood. This guide is intended to focus on purified Type I collagen as a starting material for surgical implants and substrates for tissue engineered medical products (TEMPs); some methods may not be applicable for gelatin or tissue implants. This guide may serve as a template for characterization of other types of collagen. 1.2 The biological response to collagen in soft tissue has been well documented by a history of clinical use ( 1 , 2 ) 2 and laboratory studies ( 3- 6 ) . Biocompatibility and appropriateness of use for a specific application(s) is the responsibility of the product manufacturer. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 Warning— Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPAâ's website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law. 1.5 The following precautionary caveat pertains only to the test method portion, Section 5 , of this guide. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2883-11

Standard Guide for Characterization of Ceramic and Mineral Based Scaffolds used for Tissue-Engineered Medical Products (TEMPs) and as Device for Surgical Implant Applications

1.1 This guidance document covers the chemical, physical, biological, and mechanical characterization requirements for biocompatible mineral- and ceramic-based scaffolds used solely as device or to manufacture tissue-engineered medical products (TEMPs). In this guide, the pure device or the TEMPs product will be referred to as scaffold. 1.2 The test methods contained herein provide guidance on the characterization of the bulk physical, chemical, mechanical, and surface properties of a scaffold construct. These properties may be important for the performance of the scaffold, especially if they affect cell behavior, adhesion, proliferation and differentiation. In addition, these properties may affect the delivery of bioactive agents, the biocompatibility and the bioactivity of the final product. 1.3 This document may be used as guidance in the selection of test methods for the comprehensive characterization of a raw materials, granules, pre-shaped blocks, or an original equipment manufacture (OEM) specification. This guide may also be used to characterize the scaffold component of a finished medical product. 1.4 While a variety of materials can be used to manufacture such scaffolds, the composition of the final scaffold shall contain mineral or ceramic components as its main ingredients. 1.5 This guide assumes that the scaffold is homogeneous in nature. Chemical or physical inhomogeneity or mechanical anisotropy of the scaffold shall be declared in the manufacturer s material and scaffold specification. 1.6 This guide addresses neither the biocompatibility of the scaffold, nor the characterization or release profiles of any biomolecules, cells, drugs, or bioactive agents that are used in combination with the scaffold. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F2900-11

Standard Guide for Characterization of Hydrogels used in Regenerative Medicine

1.1 Hydrogels are water-swollen polymeric networks that retain water within the spaces between the macromolecules; and maintain the structural integrity of a solid due to the presence of cross-links (1-3) . They are mainly used in regenerative medicine as matrix substitutes, delivery vehicles for drugs and/or biologics, and environments for cell culture. In these applications, hydrogel efficacy may depend on the ability to: support the permeation of dissolved gases, nutrients and bioactive materials; sustain cell growth and migration; degrade; release drugs and/or biologics at an appropriate rate; and maintain their shape. 1.2 Hydrogels used in regenerative medicine can be composed of naturally derived polymers (for example, alginate, chitosan, collagen (4, 5) ), synthetically derived polymers (for example, polyethylene glycol (PEG), polyvinyl alcohol (PVA) (4, 5) ) or a combination of both (for example, PVA with chitosan or gelatin (6) ). In clinical use, they can be injected or implanted into the body with or without the addition of drugs and/or biologics (7) . 1.3 This guide provides an overview of test methods suitable for characterizing hydrogels used in regenerative medicine. Specifically, this guide describes methods to assess hydrogel biological properties, kinetics of formation, degradation and agent release, physical and chemical stability and mass transport capabilities are discussed. 1.4 The test methods described use hydrated samples with one exception: determining the water content of hydrogels requires samples to be dried. It is generally recommended that hydrogels that have been dried for this purpose are not rehydrated for further testing. This recommendation is due to the high probability that, for most hydrogel systems, the drying-rehydration process can be detrimental with possible alterations in structure. 1.5 This guide does not consider evaluation of the microstructure of hydrogels (for example, matrix morphology, macromolecule network structure and chain conformation). 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F2450-18

Standard Guide for Assessing Microstructure of Polymeric Scaffolds for Use in Tissue-Engineered Medical Products

1.1 This guide covers an overview of test methods that may be used to obtain information relating to the dimensions of pores, the pore size distribution, the degree of porosity, interconnectivity, and measures of permeability for porous materials used as polymeric scaffolds in the development and manufacture of tissue-engineered medical products (TEMPs). This information is key to optimizing the structure for a particular application, developing robust manufacturing routes, and providing reliable quality control data. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2027-16

Standard Guide for Characterization and Testing of Raw or Starting Materials for Tissue-Engineered Medical Products

1.1 This document provides guidance on writing a materials specification for raw or starting materials intended for use in tissue engineering scaffolds for growth, support, or delivery of cells and/or biomolecules. This guide does not apply to materials that are already in a scaffold form or are finished tissue-engineered medical products. 1.2 The purpose of this guide is to provide a compendium of relevant existing standards and test methods for materials already commonly used within medical products and to provide characterization guidance for interim use of raw materials for which a standard does not exist. 1.3 This guide covers specifications and characterizations of all the major classes of materials including polymers, ceramics, metals, composites, and natural tissues of human, animal, or plant origin. This guide does not apply to pharmaceuticals. 1.4 This guide is focused on specification of chemical, physical, and mechanical properties of the raw or starting material. It does not include safety and biocompatibility requirements since safety and biocompatibility testing is typically done on materials fabricated into a final form to include all possible effects of fabrication and sterilization techniques. 1.5 Compliance with materials specifications developed in accordance with this standard may not necessarily result in a material suitable for its intended purpose. Additional testing specific to the intended use may be required.


ASTM F2605-16

Standard Test Method for Determining the Molar Mass of Sodium Alginate by Size Exclusion Chromatography with Multi-angle Light Scattering Detection (SEC-MALS)

1.1 This test method covers the determination of the molar mass (typically expressed as grams/mole) of sodium alginate intended for use in biomedical and pharmaceutical applications as well as in tissue-engineered medical products (TEMPs) by size exclusion chromatography with multi-angle laser light scattering detection (SEC-MALS). A guide for the characterization of alginate has been published as Guide F2064 . 1.2 Alginate used in TEMPs should be well characterized, including the molar mass and polydispersity (molar mass distribution) in order to ensure uniformity and correct functionality in the final product. This test method will assist end users in choosing the correct alginate for their particular application. Alginate may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS