
Aluminum brazing handbook

The Aluminum Association

Aluminum brazing handbook

THE ALUMINUM ASSOCIATION

The member companies of The Aluminum Association, Inc., represent approximately 85 percent of the domestic production of primary ingot and shipments of U.S. aluminum mill products. Mill products include sheet and plate; foil; extrusions; electrical conductor and wire, rod and bar. In addition to producers of primary ingot and mill products, the association's membership also includes secondary smelters, foundries and producers of master alloy and additives.

The association is a primary source of statistics, standards, and economic and technical information on aluminum and the aluminum industry in the United States.

ALUMINUM BRAZING HANDBOOK

Fourth Edition

January 1990

Reaffirmed December 2010

The Aluminum Association Technical Advisory Panel on Welding and Joining

THE ALUMINUM ASSOCIATION 1525 Wilson Boulevard, Suite 600, Arlington, VA 22209 www.aluminum.org

All Aluminum Association publications are reviewed at least every five years and revised, reaffirmed or withdrawn. If in doubt, users are advised to contact the Aluminum Association to ascertain whether any information presented here has been superseded.

Use of the Information

Any data and suggestions contained in this publication were compiled and/or developed by The Aluminum Association, Inc. In view of the variety of conditions and methods of use to which such data and suggestions may be applied, the Aluminum Association and its member companies assume no responsibility or liability for the use of information contained herein. Neither the Aluminum Association nor any of its member companies give any warranties, express or implied, with respect to this information.

Errata for Table 3.1 on p. 83.

Foreword

Each year millions of aluminum parts are joined by brazing. They may be found in automobiles, trucks, airplanes, submarines, spaceships, liquefaction plants, missiles, TV sets and other artifacts of our civilization ad infinitum.

Aluminum assemblies ranging in thickness from thin sheet to heavy plate and castings are routinely brazed in thousands of shops around the world. When desired, tolerances are held to better than ± 0.002 inch (.05 mm); distortion is kept close to zero. Temper in heat treatable alloys can be restored by post-brazing thermal treatment.

Brazed joints are strong, vacuum tight and neat. The fillets formed by brazing have good fatigue resistance. Properly dip-brazed aluminum units can withstand vibration and shock to 125 G.

Brazing is no longer an art. It is now an established science, and therefore warrants serious consideration by all those who have need to join aluminum to itself and to other metals.

Library of Congress Catalog Card Number 71-159578

The Aluminum Association

1525 Wilson Boulevard, Suite 600 Arlington, VA 22209

© Copyright 1998. Unauthorized reproduction by photocopy or any other method is illegal.

table of contents		
Chapter 1	Introduction to aluminum brazing	7
-	brazing's advantages	
	basic phenomenon	
	basic techniques and parameters	8
	aluminum alloys that can be brazed	
	aluminum alloys that cannot be brazed	
	brazing aluminum to other metals	
	brazing methods	
Chapter 2	Joint and fixture design	10
	basic design considerations	
	joint parameters	11
	joint clearance	
	establishing, maintaining gap clearance	12
	improving brazing filler metal flow	
	avoiding flux entrapment	
	vessels must be vented	13
	joint types	
	thick-metal and broad-lap joints	14
	other types of joints	15
	calculating overlap	
	joints for non-constant loads	16
	pressure tight vessels	17
	filler, placement, shape and quantity	10
	proper filler placement	18
	dimensional changes during brazing fixturing	
	applying the flux	20
	stopping filler from flowing	20
	sequential joints	22
Chapter 3	Page metals, brozing filler metals and fluxes	24
Chapter 5	Base metals, brazing filler metals and fluxes	24
	heat-treatable and nonheat-treatable alloys brazeable casting alloys	25
	alloys difficult to braze	23
	alloys presently not brazeable	26
	filler metals	20
	skulls and skeletons	27
	filler cleanliness	
	flux	
	chloride fluxes	
	fluoride fluxes	
	flux usage	
	flux storage and handling	28
	preparing flux for application	
Chapter 4	Pre-cleaning, oxide removal, post-cleaning and finishing	33
	pre-braze cleaning	
	oxide removal	
	keeping parts clean	35
	post-braze cleaning a chloride-flux	36
	post-braze cleaning a fluoride-flux	37
	residual flux	
	tank requirements	38
	finishing	
Chapter 5	Torch brazing	39
	hand-held gas torch brazing	
	procedure	40
	measuring joint temperature	
	handling the torch	41
	automatic torch brazing	

table of contents (continued)

table of contents (con		
Chapter 6	Flux-dip brazing	43
	the flux pot	
	dip furnace heating means	44
	ventilation	46
	choice of flux	47
	maintaining the flux bath	
	bath dehydration	48
	scum and sludge removal	
	flux composition control	49
	bath temperature	50
	immersion time	
	procedure	
Chapter 7	Furnace brazing	53
	two furnace systems	
	furnace selection	54
	assembly temperature	55
	preparing joints to be furnace brazed	00
	furnace brazing technique	56
Ohandar O		
Chapter 8	Vacuum and controlled atmosphere brazing	57
	flux, air and joint quality	
	brazing in dry, controlled atmosphere with flux	
	dry nitrogen brazing	58
	ultra-dry air brazing	
	vacuum brazing	59
Chapter 9	Other brazing methods	62
	motion brazing	-
	flow brazing	
	induction brazing	
Chapter 10	Brazing aluminum to other metals	65
Chapter 11	Joint inspection, testing and performance	67
	inspection	67
	non-destructive tests	
	testing for leaks	68
	proof testing	00
	destructive inspection	
	joint performance	70
	corrosion resistance	70
	joints in electrical conductors	71
		72
Chapter 12	Safety measures	73
ndex		75
ibliography		79
ables		82
2-1	suggested joint clearances	12
2-2	coefficients of thermal expansion	12
3-1	composition, melting range and brazeability of parent alloys	29
3-2	composition, mening range and brazeability of parent alloys composition and melting ranges of fillers	
3-3	composition and meaning ranges of milers composition and brazing range of brazing sheet and fillers	30
3-3 3-4		31
3-4 4-1	base alloy, filler and flux combinations	32
	alloy surface resistance and brazeability	35
4-2	flux removal solutions	37
5-1	tip orifice and gas pressures for brazing	40
11-1	salt water exposure test results	71
11-2	electrolytic voltages of aluminum alloys	

Chapter One

Introduction to Aluminum Brazing

Brazing's Advantages

Strong, uniform, leak-proof joints can be made rapidly, inexpensively and even simultaneously by modern brazing techniques. Joints that are inaccessible and parts, which may not be joinable at all by other methods, often can be joined by brazing.

Complicated assemblies with thick and thin sections, odd shapes and differing wrought and cast aluminum alloys can be turned into one integral, all-aluminum component by a single pass through a brazing furnace or a dip pot. Metal as thin as 0.006 inch (.15 mm) and as thick as 6 inches (15.2 cm) can be brazed.

Brazed joint strength is very high. The nature of the inter-atomic bond (metallic) is such that even a simple joint, when properly designed and made, will have equal or greater strength than that of the as-brazed base metal.

Heat-treatable aluminum alloys can be solution heat treated by quenching immediately after brazing, and thus can be strengthened by aging alone.

Brazed aluminum assemblies are all aluminum with excellent corrosion resistance when properly cleaned of any residual chloride flux. Brazed aluminum joints generally resist corrosion as well as welded aluminum joints.

Brazed aluminum assemblies conduct heat and electricity uniformly. Brazed aluminum heat exchangers, evaporators and similar complex fabrications are therefore long lasting and highly efficient.

The meniscus surface formed by the fillet metal as it curves across corners and adjoining sections is ideally shaped to resist fatigue.

Complex shapes with greatly varied sections are brazed with little distortion. Aluminum's excellent thermal conductivity assists in providing even distribution of the relatively moderate temperature required for brazing.

Precise joining is comparatively simple with brazing. Unlike welding, in which the application of intense heat to small areas acts to move the parts out of alignment, parts joined by furnace and salt pot techniques are heated fairly evenly. Part alignment is easier with brazing. Brazed joints with tolerances of ± 0.002 inch (0.05 mm) are commonplace in microwave component production.

Properly brazed joints are leak tight. A vessel, sealed by brazing and evacuated to 2×10^{-5} torr (2.7 mPa), was observed for 100 hours. After that time, leakage increased internal pressure to only 1.6 \times 10⁻⁴ torr (21.3 mPa), which is excellent for any metal joint.

Finishing costs are negligible. The capillary action that draws the filler metal into the joint also forms smooth concave surfaces. Little mechanical finishing, if any, is required. When using a flux brazing method, removal of residual chloride flux is required. The color match between parent metal and filler is generally good.

Personnel training is minimal. Production brazing equipment has been refined to where semi-skilled and nonskilled people suffice for most operations. Mechanically adept personnel can be trained in a few hours to torch braze.

Basic Phenomenon

Bring two pieces of metal within 4 Angstrom units $(\text{\AA} = 10^{-10} \text{ meter})$ of each other and inter-atomic attraction will bind them together in permanent metallic bond. This is the basis of brazing and soldering and is accomplished by "wetting" the metals to be joined with molten metal, which on cooling forms the joint.

If the temperature of the wetting metal is above $800^{\circ}F$ (426°C), the process, by accepted American Welding Society definition, is called brazing and the molten metal is called brazing filler metal. If the temperature is below $800^{\circ}F$ (426°C), the process is called soldering and the molten metal is called solder. Welding differs in that the base metals to be joined are molten at the moment of joining.