20

1

Aluminum soldering handbook

The Aluminum Association

About the Aluminum Association

The Aluminum Association, based in Washington, DC, with offices in Detroit, MI, represents U.S. and foreign-based primary producers of aluminum, aluminum recyclers and producers of fabricated products as well as suppliers to the industry. Member companies operate more than 200 plants in North America and many conduct business worldwide.

Notice/Disclaimer

The use of any information contained herein by any member or non-member of The Aluminum Association is entirely voluntary. The Aluminum Association has used its best efforts in compiling the information contained in this book. While the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or implied, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein.

All Aluminum Association published standards, data, specifications and other technical materials are reviewed and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use.

ALUMINUM SOLDERING HANDBOOK

Fifth Edition November 2004 Copyright© 2004

The Aluminum Association, Inc. 900 19th St., N.W. Washington, DC 20006 www.aluminum.org

The Aluminum Association, Inc.

Technical Committee on Welding and Joining

Mr. Tony Anderson Alco Tec Wire Corporation

Mr. Bill Christy Alcan International Limited

Mr. Kyle Williams Alcoa, Inc. Alcoa, Inc. Mr. Peter Pollak The Aluminum Association, Inc.

Mr. Frank G. Armao Lincoln Electric Company/The

Mr. Donald J. Spinella Alcoa, Inc. Alcoa, Inc.

Foreword

The principles underlying soldering of aluminum are identical to those that make metallurgical bonding of other metals possible. After aluminum's tough protective oxide coating is removed, the soldering of aluminum proceeds along lines similar to those used with other metals, utilizing essentially the same techniques and equipment.

Properly made, aluminum joints are long lasting, gas tight and strong. Depending on the solder chosen, aluminum joints can be as strong as the metal joined. When tested, these joints fail at the base metal.

Aluminum is joined by soldering when many joints are to be made simultaneously and economically; when nearby material precludes the higher heats of brazing and welding; when component distortion must be avoided; when temper loss is to be held to a minimum; when equipment investment funds are limited; and when rapid field repairs with hand-held tools are needed.

Soldered aluminum joints are widely used in spacecraft, electronics, electrical power plants and power lines, household goods, refrigeration systems and air conditioning. The list of current and future solder applications is virtually endless.

Library of Congress Catalog Card Number 74-173196

Use of the Information

Any data and suggestions contained in this publication were compiled and/or developed by The Aluminum Association, Inc. In view of the variety of conditions and methods of use to which such data and suggestions may be applied, The Aluminum Association and its member companies assume no responsibility or liability for the use of information contained herein. Neither The Aluminum Association nor any of its member companies gives any warranties, express or implied, with respect to this information.

table of contents		
Chapter 1	Introduction to Aluminum Soldering	5
•	Advantages of soldering	5
	Basic process	5
	Soldering with flux	6
	Soldering without flux	6
	Soldering without solder	7
	Solder heat	7
Chapter 2	Material for Soldering	8
Onapter 2	Breadth of choice of material	8
	Alloy temper and solderability	8
	Retention of temper	8
	Distortion eliminated	8
	Solderability and alloying elements	8
	Alloys and surface preparation	10
	Alloying elements and intergranular penetration	10
	Wrought aluminum alloys most frequently soldered	12
	Solderable casting alloys	12
	Flux	12
	Organic fluxes	12
	Reaction fluxes	14
	Flux and intergranular penetration	15
	Fluxes for mixed-metal soldering	15
	Solder	16
	Soldering temperatures	18
	Abrasion solder	18
	Available solder forms	18
	Solder clad sheets	18
	Color match	19
	Wiping solders	19
Chapter 3	Pre-Cleaning, Oxide Removal and Surface Preparation	20
	Measuring oxide thickness	20
	Oxide removal	21
	Keeping the parts clean	22
	Cleaning, oxide removal and joint qualitly	23
	Surface preparation-precoating	23
	Tinning	24
	Plating with chemical energy	24
	Alsan 70/process	25
	Electroplating	25
	Local plating	25
Chapter 4	Postcleaning and Finishing	26
	Organic flux residue	26
	Chloride flux residue removal	26
	Chloride-containing flux residue removal formulas	27
	Testing for flux traces	27
	Finishing	28
Chapter 5	Fixture and Joint Design	29
	Casual soldering	29
	Basic solder-joint parameters	29
	Solder joint requirements	29
	Joint clearance	30
	Suggested joint clearances	30

table of contents

	Joint types Calculating overlap Locked joints Designing corrosion resistance into a joint Corrosion consideration when soldering to other metals Vibratory-load joint design Pressure-tight vessels Solder shape and quantity Solder placement Pre-positioning solder Dimensional changes at soldering temperatures Design for self-fixturing Fixture design Establishing and holding joint clearance Applying flux	31 33 34 35 35 35 35 36 36 36 36 37 37 39 40
Chapter 6	Torch, Iron and Hot-Plate Soldering Torch and flux Massive parts and castings Automatic torch soldering Flux and iron Hot-plate soldering	41 43 43 44 45
Chapter 7	Abrasion and Ultrasonic Soldering Abrasion soldering Abrasion tool Solder Technique Ultrasonic soldering Ultrasonic solders	46 46 47 47 48 48
Chapter 8	Furnace Soldering Procedure Time and temperature Heat distribution within the furnace	49 49 49 50
Chapter 9	Other Soldering Techniques–Reaction, Wipe, Induction, Dip and Radiant Heat Reaction flux soldering Wipe soldering Induction soldering Dip soldering Radiant heat soldering	51 51 51 51 54 54
Chapter 10	Soldering Castings	56
Chapter 11	Soldering Aluminum to Other Metals and to Nonmetallics Choice of flux and solder Technique for mixed metal soldering Soldering aluminum to nonmetallics	58 58 58 60
Chapter 12	Joint Inspection, Testing and Performance Visual inspection	61 61

table of contents		
	Nondestructive tests	62
	Testing for leaks	63
	Proof testing	63
	Destructive inspection	63
	Joint performance	64
	Service temperatures	64
	Corrosion resistance	64
	Designing corrosion resistance into a joint	65
	Flux and corrosion resistance	65
	Protected joints	66
	Corrosion resistance of dissimilar metal joints	66
Chapter 13	Safety measures	69

tables

2-	Composition and solderability of wrought aluminum alloys	9
2-2	2 Solderability of aluminum casting alloys	10
2-3		13
2-	· · ·	16
2-	5 Composition of typical solders	17
2-		18
3-	1 Solderable oxide thicknesses	21
3-3	2 Electroless baths for plating aluminum	25
3-	3 Chemical reduction plating baths	25
5-	1 Coefficients of thermal expansion	37
6-		41
11-	and a second sec	59
12-		65
12-	2 Cathodic and anodic relationships	65
12-		68

figures

1-1	Return bends on automatically soldered all-aluminum		
	heat exchanger	7	
2-1	Solder forms	11	
2-2	Effect of composition of zinc solders, soldering		
	time and soldering temperature on rate of inter-		
	alloying between zinc solders and aluminum alloy 6061	15	
3-1	Self-contained ultrasonic cleaning system	21	
3-2	Surface resistance versus time for two caustic solutions	22	
3-3	Typical buildup of oxide on pure aluminum alloys	23	
3-4	X-ray of carefully cleaned and deoxidized solder joints	24	
3-5	X-ray of solder joints comprising a similar unit;		
	the joints were neither degreased nor deoxidized	24	
4-1	Personnel protection	27	
5-1	Joint clearance effects	30	
5-2	Variable dimension design	31	
5-3	Excellent socket joint design	31	
5-4	Vent holes	32	
5-5		32	
5-6	Solder joint designs frequently used with aluminum	32	
5-7	Weep holes	33	

figures

5-8 5-9	Calculating needed overlap by formula Lock seam designs	33 34
5-10	Design for condensation	35
5-11	Typical soldered joints that have proven suitable for	
	pressure-tight containers	35
5-12	Soldered joints after internally and externally positioned ring of	
	solder has been used	37
5-13	Twenty-one suggestions for making assemblies to be soldered	
	self-fixturing	38
5-14A	How C-clamp springs may be used to hold parts lightly but dependably	
	during soldering	39
5-14B	Simple, spring-loaded fixture serves an assembling and	
	aligning aid	39
5-15	How prick punch indentations and similar protrusions may be used	
	to center and hold part in place	39
5-16	Example of how an offset may be used to establish and hold joint	
	clearance between parts while they are being soldered	39
6-1	Torch soldering is simple and rapid	42
6-2	Typical setup for soldering a tee joint	42
6-3	Automatic torch soldering an experimental air conditioning condenser	44
6-4	Simple setup for soldering a lap joint with an iron or torch	45
6-5	Hot-plate soldering	45
7-1	Simple, table-top supports for holding work pieces immobile	
	when abrasion soldering	47
7-2	Simple guide and weight arrangement to hold parts in alignment	
	when tinned surfaces are heated for joining	47
7-3	Typical ultrasonic soldering pot	48
8-1	Furnace soldering fixturing	50
8-2	Two temporary shields, fastened to walls of furnace,	
	retard heating of solder and flux	50
9-1	Self-spacing lap joints soldered with reaction flux alone	52
9-2	Wipe soldering a splice between two cable sheaths	52
9-3	Induction soldering	53
9-4	Induction coil forms	53
9-5	Small dip soldering pot in production use	54
9-6	Electrically powered radiant heat soldering equipment	55
10-1	Repair of casting surface holes	57
10-2	Examples of castings that have been soldered	57
11-1	Magnified cross-sectional view of aluminum soldered to steel	57
	with zinc solder	59
11-2	Intermetallic interface layer between alloy 3003 aluminum and	55
112	the 70-30 brass plate	59
12-1	Example of good socketed tube joint	62
12-2	Example of good galvanized steel to aluminum plate soldered joint	62
12-2	Oscillograph displays solder joint homogeneity	
12-3	Approximate electrical potential developed across low-temperature	63
12-4	solder joint and zinc solder joint	66
12-5	Copper-plated joint walls have more positive potential than the	66
12-0	aluminum	66
12-6	Effect of chloride-containing flux residue on electrical resistance	66
12-0	of aluminum-to-copper joint exposed to industrial atmosphere	67
	or aluminum-to-copper joint exposed to industrial atmosphere	67

Chapter One

Introduction to Aluminum Soldering

Soldering is an inexpensive and rapid means of permanently joining aluminum to aluminum and to other metals. Properly made joints are leakproof and strong. Soldering is used for joining aluminum wires, making heat exchangers, spacecraft plumbing and thousands of other applications far too numerous to list here.

Aluminum soldering is relatively simple. Single joints are readily made in the field and shop with low-cost hand tools. Single and multiple joints, often numbering in the thousands, are automatically produced with comparatively low-cost equipment by semiskilled personnel.

Advantages of Soldering

By accepted American Welding Society definition, soldering is a joining process wherein coalescence between metal parts is produced by heating to suitable temperatures generally below 840°F, and by using a filler metal having a liquidus not exceeding 840°F (449°C) and below the solidus of the base metals. The solder is usually distributed between the properly fitted surfaces of the joint by capillary attraction. Brazing, by the same definition, is a similar process accomplished at temperatures above 840°F but below the melting point of the metals to be joined. Welding requires that the parent metals be brought to or above their melting points.

As soldering is accomplished at lower temperatures than brazing (and at considerably lower temperatures than welding), it is often possible, by proper selection of alloy and a low temperature solder, to solder aluminum with little loss of parent metal temper. Brazing requires a following quenching and aging treatment to restore temper. (This is only possible with heat-treatable alloys.) Remelting temperatures of soldered joints are too low to permit solution heat treatment of soldered assemblies in heat-treatable aluminum alloys.

In contrast to welding, the heat of soldering (and brazing) is fairly evenly distributed. Part expansion and subsequent contraction associated with soldering is far less an obstacle to precise joining than the inter-part motion generated by the intense, concentrated heat necessary for welding.

As soldering does not need to be followed by quenching (to restore temper) and as soldering is accomplished at lower temperatures than either brazing or welding, assembly distortion due to soldering is generally nil. By the same token, soldered assemblies have lower temperature-induced stresses as compared to brazed or welded aluminum assemblies.

The temperatures employed in soldering, the nature of the process and aluminum's excellent thermal conductivity combine to make it reasonably easy to solder complex assemblies with varied sections.

The fluxes normally used to solder aluminum are easier to remove than the fluxes normally used for brazing aluminum. There is also a group of aluminum soldering fluxes that, in many applications, do not need to be removed. (Certain organic fluxes are nonhygroscopic and noncorrosive.)

Aluminum may be soldered with a wide range of solders, a wide range of temperatures and a variety of fluxes. Brazing aluminum is accomplished in a narrow range of temperatures just below the melting point of the parent metal. Only a limited variety of fluxes are currently available for brazing. Soldering therefore offers the designer greater flexibility within its scope.

Aluminum is brazed at temperatures no more than about 50°F below the solidus temperature of the base metal, and frequently closer. Aluminum soldering temperatures are, at a minimum, 200°F below the solidus temperature of the base metal. Temperature control with aluminum soldering is therefore considerably less stringent and demanding than that necessary for brazing. Less skill is required on the part of the torch operator to keep from melting the base metal when soldering than when brazing. (The solidus temperature of a metal marks the onset of melting. Liquidus marks the thermal point at which the metal is completely liquid. Between its solidus and liquidus temperature points, a metal is semi-liquid or slushy.)

Soldering aluminum is relatively simple. Written instructions are all that is needed for casual forming of joints. Commercial-quality soldering can be quickly taught.

Basic Process

Many techniques are currently used to solder aluminum.