American National Standard
Dimensional Tolerances for
Aluminum Mill Products

Secretariat
The Aluminum Association
Incorporated
American National Standard

Approval of an American National Standard requires verification by the American National Standards Institute (ANSI) that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will under no circumstances give an interpretation of any American Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of approval. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 25 West 43rd Street, New York, NY 10036.
American National Standard Dimensional Tolerances for Aluminum Mill Products

Secretariat

The Aluminum Association, Inc.
1400 Crystal Drive, Suite 430
Arlington, Virginia 22202

Approved May 12, 2017
December 2017 Issue

American National Standards Institute

© Copyright 2017, The Aluminum Association, Inc.
All rights reserved. Unauthorized reproduction, distribution, creation of derivative works, and/or sale of this work is prohibited.
Contents

1. Definitions ... 7
2. Standard Limits for Expressing Tolerances 8
3. **Applicable Limits** .. 9
4. Section Intentionally Blank. 9
5. Section Intentionally Blank 9
6. Section Intentionally Blank 9
7. Sheet and Plate ... 9
 Sheet and Plate—Tables 7.7a–7.18 10
 Special Finished Sheet and Plate Products—Tables 7.26–7.43 14
 Commercial Roofing and Siding—Tables 7.26–7.30 14
 Duct Sheet—Tables 7.31–7.34 15
 Tread Sheet and Plate—Tables 7.36–7.43 15
8. Fin Stock .. 17
 Fin Stock—Tables 8.2–8.3 ... 17
9. Foil ... 18
 Foil—Tables 9.2–9.24 ... 18
 Unmounted Foil—Tables 9.2–9.8 18
 Laminated Foil—Tables 9.9–9.16 19
 Printed Foil—Tables 9.17–9.24 20
10. Wire, Rod, and Bar—Rolled or Cold Finished. 21
 Wire, Rod and Bar—Rolled or Cold-Finished—Tables 10.5–10.20 21
11. Wire, Rod, Bar and Profiles—Extruded 24
 Wire, Rod, Bar and Profiles—Tables 11.2–11.14 24
12. Tube and Pipe .. 32
 Tube and Pipe—Tables 12.2–12.55 33
 Extruded Tube—Tables 12.2–12.14 33
 Extruded Coiled Tube—Tables 12.16–12.18 37
 Drawn Tube—Tables 12.20–12.32 38
 Heat Exchanger Tube—Tables 12.34–12.39 41
 Welded Tube—Tables 12.41–12.47 42
 Pipe—Tables 12.49–12.55 44
13. Structural Profiles ... 47
14. Forging Stock .. 48
 Forging Stock—Tables 14.1–14.4 48
15. Forgings ... 49
 Hand Forgings—Table 15.3 49
16. Electrical Conductors .. 50
 Electrical Conductors—Tables 16.7–16.35 50
 Wire, Rod and Bar—Rolled or Cold Finished—Tables 16.7–16.21 50
 Extruded Rod and Bar—Tables 16.22–16.29 52
 Pipe—Tables 16.31–16.35 54
ACCREDITED STANDARDS COMMITTEE H35
ON
ALUMINUM AND ALUMINUM ALLOYS

OFFICERS

Francine Bovard, Chairman
John Weritz, Secretary

COMMITTEE MEMBERS

THE ALUMINUM ASSOCIATION
FRANCINE BOVARD, Arconic, New Kensington, Pennsylvania

AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA
JAMES R. RENTSCH, Aerospace Industries Association of America, Arlington, Virginia

ALUMINUM EXTRUDERS COUNCIL
OLIVIER GABIS, Wagstaff, Saint Clairsville, Ohio

AMERICAN FOUNDRY SOCIETY
STEVE ROBISON, American Foundry Society, Schaumburg, Illinois

ASTM INTERNATIONAL
BRIAN P. COCHRAN, ASTM B07, Wabash, Indiana

METAL SERVICE CENTER INSTITUTE
JULIE S. THANE, Metal Service Center Institute, Chicago, Illinois

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION
VINCE BACLAWSKI, National Electrical Manufacturers Association, Arlington, Virginia

SAE INTERNATIONAL (SOCIETY OF AUTOMOTIVE ENGINEERS)
ROBERT STEFFEN, Raytheon Precision Manufacturing, Dallas, Texas

U.S. DEPARTMENT OF COMMERCE
FRANK W. GAYLE, National Institute of Standards and Technology, Gaithersburg, Maryland

U.S. DEPARTMENT OF THE NAVY
CARL LEVANDUSKY, Naval Air Warfare Center Aircraft Division, Lakehurst, New Jersey

U.S. DEPARTMENT OF THE AIRFORCE
JEFFREY CALCATERA, US Airforce Systems Support Division, Dayton, Ohio
Foreword

This Standard is a revision of “American National Standard Dimensional Tolerances for Aluminum Mill Products” issued in 2013 (ANSI H35.2-2013).

The tolerances included in this Standard were developed by the Technical Committee of The Aluminum Association. They are broadly accepted both within the aluminum industry itself and by users of the metal. They are the basis of the dimensional tolerances specified in U.S. government, technical society, and other specifications for aluminum products. They represent the maximum deviation from specified dimensions that may be expected in any individual piece. For most pieces the deviation from specified dimensions will be less than the tolerance shown.

Work on the tolerances began in the Aluminum Association in 1949, five years before its Technical Committee was established. In that year a special committee was appointed by the Association’s Extruded Products Division to develop drafting standards for these products. One of the committee’s assignments was to develop standard tolerances for aluminum extrusions. The committee completed its work later in 1949, and the Association issued the first edition of its Drafting Standards for Extruded and Tubular Products, including the tolerances, in October of that year.

By 1954, the Association’s technical activities had grown to the point that a standing Technical Committee was needed. One of the first jobs undertaken by this committee was the compilation of mechanical property data for commonly used aluminum alloys and dimensional tolerances for other aluminum mill products. This work was completed later in 1954, and the resulting data were published in the first edition of the Association’s “Standards for Aluminum Mill Products” in June 1955. Successive editions of the “Standards for Aluminum Mill Products” have been revised to include new data and to keep the manual abreast of industry advances. In 1968 the title was changed to “Aluminum Standards and Data” to reflect the adoption of a revised format.

Many refinements have been made in the tolerances as experience was gained in their use. In addition, tolerances have been developed for products not covered initially, and the data have been extended to embrace the larger sizes now being produced. All of these additions and refinements have been incorporated into this Standard. Included also are definitions of the various products as given in “Aluminum Standards and Data” published by the Aluminum Association, and standard limits for expressing the tolerances.

This Standard was originally developed and subsequently revised using the “canvass” method and published under the proprietary sponsorship of the Aluminum Association. At the request of the Aluminum Association, the establishment of Standards Committee H35 on Aluminum and Aluminum Alloys was authorized by the American National Standards Institute on 17 February 1970, with the Association serving as Secretariat.

The 1971 revision of ANSI H35.2 was the first revision developed by Standards Committee H35, under the “Standards Committee” procedures, and the 1972, 1975, 1978, and 1982 revisions were developed under the auspices of that Committee.

Standards Committee H35 was transferred to an Accredited Standards Committee on December 28, 1983, and this revision was developed under the Accredited Standards Committee method.

This latest (2017) revision consists of updated illustrations, removal of footnote 1, changes to the list of definitions, the addition of the definition of applicable limits, edits to the definition of mean wall thickness, editorial corrections and clarifications to table headings and footnotes. These changes are indicated by highlights in the text.

Errata: A typographical error was corrected in Col. 4 of Table 11.2 Cross-Sectional Dimension Tolerances—Profiles. Column 4 heading was changed from “At Dimensioned Points 0.250-0.642 inches from Base of Leg” to “At Dimensioned Points 0.250-0.624 inches from Base of Leg.”