About the Aluminum Association
The Aluminum Association based in Arlington, Virginia, works globally to aggressively promote aluminum as the most sustainable and recyclable automotive, packaging and construction material in today's market. The Association represents U.S. and foreign-based primary producers of aluminum, aluminum recyclers and producers of fabricated products, as well as industry suppliers. Member companies operate approximately 180 plants in the United States with many conducting business worldwide.

Notice/Disclaimer
The use of any information contained herein by any member or non-member of The Aluminum Association is entirely voluntary. The Aluminum Association has used its best efforts in compiling the information contained in this book. While the Association believes that its compilation procedures are reliable, neither the Association nor its member companies warrant, either expressly or impliedly the accuracy or completeness of this information, or that it is fit for any particular purpose. The Aluminum Association and its member companies assume no responsibility or liability for the use of the information herein.

The Aluminum Association provides information and resources about aluminum products and aluminum-related technology as a service to interested parties. Information provided by the Aluminum Association is generally intended for users with a technical background and may be inappropriate for use by laypersons.

All Aluminum Association published standards, data specifications and other technical materials, including this book, may be reviewed and revised, reaffirmed or withdrawn without prior notice. Users are advised to contact the Aluminum Association to ascertain whether the information in this book has been superseded in the interim between publication and use.
Acknowledgement

The Aluminum Association gratefully acknowledges the contribution of Superior Flux & Mfg. Co., Mr. William Avery and Dr. Yehuda Baskin, for their generous contribution to this revision.

USE OF THIS INFORMATION

Any data and information contained in this paper were compiled and/ or developed by the Aluminum Association, Inc. In the view of the variety of conditions and methods of use to which such data and information may be applied, the Aluminum Association and its member companies assume no responsibility or liability for the use of information contained herein. Neither the Aluminum Association nor any of its member companies give warranties, express or implied, with respect to this information.
Foreword

The principles underlying soldering of aluminum are identical to those that make metallurgical bonding of other metals possible. After aluminum’s tough protective oxide coating is removed, the soldering of aluminum proceeds along lines similar to those used with other metals, utilizing essentially the same techniques and equipment. But, it is precisely the difficulty in removing aluminum’s protective oxide coating that makes soldering of the metal challenging. This is why the role of cleaners and fluxes is so important in the aluminum soldering process.

Properly made, aluminum joints are long lasting, gas tight and strong. Depending on the solder chosen, aluminum joints can be as strong as the metal joined. When tested, these joints fail at the base metal.

Aluminum is joined by soldering when many joints are to be made simultaneously and economically; when nearby material precludes the higher heats of brazing and welding; when component distortion must be avoided; when temper loss is to be held to a minimum; when equipment investment funds are limited; and when rapid field repairs with hand-held tools are needed.

Soldered aluminum joints are widely used in spacecraft, electronics, electrical power plants and power lines, household goods, refrigeration systems and air conditioning. The list of current and future solder applications is virtually endless.

© Copyright 2017, The Aluminum Association, Inc.
Unauthorized reproduction by photocopy or any other method is illegal
Table of Contents

Chapter 1 Introduction to Aluminum Soldering
13
- Purpose of Aluminum Solder Connections
13
- Advantages of Soldering
13
- Basic Process
14
- Soldering with Flux
15
- Soldering without Flux
16
- Solder Heat
16

Chapter 2 Aluminum Alloys
17
- Breadth of Choice of Material
17
- Alloy Temper and Solderability
17
- Retention of Temper
17
- Distortion Eliminated
18
- Solderability and Alloying Elements
18
- Alloying Elements and Intergranular Penetration
18
- Solderable Casting Alloys
23

Chapter 3 Solders for Aluminum
24
- Creating Solder to Aluminum Intermetallic Bond
24
- Choice of Solder Alloy
24
- Tin-Zinc Solders
25
- Tin-Silver Solders
25
- Tin-Copper Solders
26
- Tin-Lead-Silver Solders
26
- Zinc-Aluminum Solders
27
- Low Temperature Aluminum Solder
28
- Soldering Temperatures
28
- Abrasion Solder
28
- Available Solder Forms
28
- Improving Aluminum Solderability by Coating
29
- Color Match
29
- Wiping Solders
29

Chapter 4 Fluxes for Aluminum
30
- Purpose of Using Flux on Aluminum
30
- Organic Fluxes
31
- Liquid Flux
31
- Paste Flux
32
- Solderpaste
32
- Core Flux in Wire Solder
33
- Flux Action on Aluminum
33
- Cleaning Flux Residues
34
Chapter 5 Pre-Cleaning, Oxide Removal, and Surface Preparation

- Measuring Oxide Thickness 39
- Oxide Removal 40
- Keeping the Parts Clean 41
- Cleaning, Oxide Removal, and Joint Quality 42
- Surface Preparation Pre-coating 43
- Tinning 43
- Plating with Chemical Energy 44

Chapter 6 Post-Cleaning and Finishing

- Organic Flux Residue 45
- Chloride Flux Residue Removal 46
- Testing for Flux Traces 47
- Finishing 48

Chapter 7 Fixture and Joint Design

- Casual Soldering 49
- Basic Solder-Joint Parameters 49
- Solder Joint Requirements 50
- Joint Clearance 50
- Suggested Joint Clearances 51
- Joints Must Be Vented 53
- Joint Types 54
- Calculating Overlap 55
- Locked Joints 56
- Designing Corrosion Resistance into a Joint 57
- Corrosion Consideration When Soldering to Other Metals 58
- Vibratory-Load Joint Design 58
- Pressure-Tight Vessels 59
- Solder Shape and Quantity 59
- Solder Placement 59
- Pre-Positioning Solder 60
- Dimensional Changes at Soldering Temperatures 61
- Design for Self-Fixturing 61
- Fixture Design 63
- Establishing and Holding Joint Clearance 64
- Applying Flux 65
Chapter 8 Torch, Iron, and Hot-Plate Soldering
Torch Soldering 66
Torch Heating Massive Parts and Castings 67
Automatic Torch Soldering 70
Hot-Plate Soldering 71
Soldering Iron 72

Chapter 9 Abrasion and Ultrasonic Soldering 74
Abrasion Soldering 74
Abrasion Tool 76
Solder 76
Technique 76
Ultrasonic Soldering 76
Ultrasonic Solders 77

Chapter 10 Furnace Soldering 78
Production Procedure 78
Time and Temperature 79
Heat Distribution Within Furnace 80

Chapter 11 Other Soldering Techniques – Induction, Dip, Reaction, Wipe, and Radiant Heat 81
Induction Soldering 81
Dip Soldering 84
Reaction Flux Soldering Without External Solder 85
Wipe Soldering 86
Radiant Heat Soldering 87

Chapter 12 Soldering Castings 88

Chapter 13 Soldering Aluminum to Other Metals and to Nonmetallics 90
Dissimilar Metal Joining Methods 91
Choice of Flux and Solder 92
Technique for Mixed Metal Soldering 92
Soldering Aluminum to Nonmetallics 93

Chapter 14 Joint Inspection, Testing, and Performance 94
Visual Inspection 94
Nondestructive Tests 95
Testing for Leaks 96
Proof Testing 97
Destructive Inspection 97
Joint Performance 97
Service Temperatures 98
Corrosion Resistance 98
Designing Corrosion Resistance into a Joint 101
Chapter 15 Safety Measures

Tables

2-1 Composition and Solderability of Commercial Wrought Aluminum Alloys 21
2-2 Comparative Solderability of Various Aluminum Casting Alloys 23
3-1 Composition and Performance of Typical Solders for Use with Aluminum 25
4-1 Characteristics of Typical Soldering Fluxes for Aluminum 31
4-2 Organic Fluxes – General Physical Properties and Types of Usage 34
5-1 Surface Resistances 39
7-1 Approximate Coefficients of Thermal Expansion for Common Metals 61
8-1 Tip Orifice Diameter and Approximate Gas Pressure Used for Torch Soldering 67
13-1 Solderability of Aluminum to Other Metals and Nonmetals 90
14-1 Solution Potential in Volts of Commonly Soldered Metals 99
14-2 Alloys Tested Against a 0.1N Calomel Reference Electrode 100
14-3 Solder Systems Versus Exposure to Salt Spray 102
Figures

3-1 Effect of Composition of Zinc Solders, Soldering time, and Soldering Temperature on Rate of Inter-alloying between Zinc Solders and Aluminum Alloy 6061

4-1 Aluminum Fin Placed on Solder Foil, Flux, and Aluminum Base
4-2 Aluminum Fin Soldered to Aluminum Base After Solder Reflow
4-3 Dispensable Aluminum Flux Paste Placed on Metal Surface
4-4 Aluminum Fin Placed on Solderpaste Dispensed on Copper
4-5 After Solder Reflow Fins are Soldered to Copper
4-6 Wire Solder with Aluminum Core Flux in the Center of Wire
4-7 Soldering Aluminum to Aluminum with Wire Solder Containing Core Flux
4-8 Reaction Flux Placed Between Two Aluminum Parts with a Wire Solder of Zinc/Aluminum
4-9 The Flux Smokes as its Activation Temperature is Reached and the Solder Begins to Flow

5-1 Nonhazardous Cleaner Removing Oxides from Aluminum
5-2 Typical buildup of oxide on 1XXX Series Aluminum Alloys
5-3 X-ray of Carefully Cleaned and De-oxidized Solder Joints Comprising a Heat Exchanger
5-4 X-ray of Solder Joints Comprising a Similar Unit
5-5 Aluminum Plate Coated with Flux then Dipped into Molten Pot of Solder
5-6 Tinned Aluminum Plate

6-1 Cleaning Schematic for Multiple Stage Non-hazardous Cleaner with Flowing Water Rinses to make the Last Tank of Water as Clean as Possible

7-1 Joint Clearance Effects
7-2 Variable Dimension Design
7-3 Excellent Socket Joint Design
7-4 Vent Holes
7-5 Venting Shape Variations
7-6 Solder Joint Designs Frequently Used with Aluminum
7-7 Weep Holes
7-8 Calculating Needed Overlap by Formula
7-9 Lock Seam Designs
7-10 Design for Condensation
7-11 Typical Soldered Joints that have Proven Suitable for Pressure-Tight Containers
7-12 Soldered Joints after an Internally and Externally Positioned Ring of Solder has been Used
7-13 Twenty-one Suggestions for Making Assemblies to be Soldered Self-Fixturing
7-14A How C-Clamp Springs May be Used to Hold Parts Lightly but Dependably During Soldering
7-14B Simple Spring-Loaded Fixture Serves as Assembling and Aligning Aid
7-15 How Prick Punch Indentations and Similar Protrusions May be Used to Center and Hold Part in Place
7-16 Example of how Offset May be Used to Establish and Hold Joint Clearance Between Parts While they are Being Soldered

8-1 Typical Setup for Soldering a Tee Joint
8-2 Torch Soldering Using Aluminum Flux Cored Organic-Based Wire Solder
8-3 Torch Soldering Using Reaction Flux and Solid Solder
8-4 An Aluminum Sheet is Marked by High Temperature Resistance Paste to Limit the Area of Solder Flow
8-5 A Direct Aluminum Soldering Paste is Placed in the Designated Area
8-6 Heating on a Hot Plate Makes the Solder Paste Active to Bond to the Aluminum Metal
8-7 The Result is an Aluminum Sheet Made Solderable to the Solder Coating by All Kinds of Soldering Methods
8-8 Simple Setup for Soldering a Lap Joint with an Iron or Torch.
9-1 Spring-Loaded Table Top Support for Holding Work Piece Stationary as Solder is Applied
9-2 Spring Holding Fixture Holding Material Immobile While Torch Heating and Solder is Put into Place
9-3 Simple Guide and Weight Arrangement when Tinned Surfaces are Heated for Joining
9-4 Insulated Spring Holds Box Walls in Place while Tinned Ends are Heated for Joining

10-1 Reflow Oven for Soldering
10-2 Interior Schematic of the Convection Reflow Oven Showing Heated Forced Air Passing Through Multiple Heating Zones
10-3 Thermal Profile Developed from Temperature Probing a Heat Sink Through a Solder Reflow Oven

11-1 Induction Soldering
11-2 Induction Coil Forms
11-3 Insulated Aluminum Wire
11-4 Wire Immersed in Aluminum Soldering Flux
11-5 Wire Immersed in Solder
11-6 Soldered Aluminum Wire
11-7 Self-spacing Lap Joints Soldered with Reaction Flux Alone

12-1 Repair of Casting Surface Holes

13-1 Diagram of Aluminum Fins Soldered to a Copper Base
13-2 Soldered Aluminum Fins to a Copper Base
13-3 Plated Aluminum Surface Soldered with 63/37 Tin-Lead 92
13-4 Un-plated Aluminum Surface Soldered with 91/9 Tin-Zinc 92

14-1 Approximate Electrical Potential Developed Across Low-Temperature 101
 Solder Joint and Zinc Solder Joint
14-2 Effect of Chloride-Containing Flux Residue on Electrical Resistance of 103
 Aluminum-to-Copper Joint Exposed to an Industrial Atmosphere
14-3 Copper-plated Joint Walls Have More Positive Potential Than the Aluminum 105
Introduction to Aluminum Soldering

Soldering is an inexpensive and rapid means of permanently joining aluminum to aluminum and to other metals. Properly made joints are leak-proof and strong. Soldering is used for joining aluminum wires, making heat exchangers, spacecraft, plumbing and thousands of other applications far too numerous to list here.

Aluminum soldering can be straightforward when proper solder alloys, cleaners, and fluxes are used. Single joints are readily made in the field and shop with low-cost hand tools. Single and multiple joints, often numbering in the thousands, are automatically produced with comparatively low-cost equipment by semi-skilled personnel.

Purpose of Aluminum Solder Connections

The first step in proceeding with aluminum soldering is to understand the type of connection being made, as follows:

Tinning – This technique is used to render the relatively non-solderable surface of aluminum (by ordinary soldering fluxes) solderable by coating the aluminum with a more solderable alloy.

Thermal/Electrical – The connection described here will be able to transfer electrical or thermal energy from one metal into another through the connecting solder media.

Structural (Joint Formation) – The formation of a structural joint holding two metals involves the process of joint clearance and assistance of solder flow. This is an important consideration, since aluminum has a higher surface tension with respect to solder, than other metals, like copper. Therefore, when making a capillary joint one has to consider the space necessary to facilitate solder flow.

Load-Bearing – Like a thermal/electrical or a structural joint, this type of connection is also expected to bear a certain amount of stress. When creating a joint that is to bear a known amount of stress, joint design and solder alloy choice are key factors.

Advantages of Soldering

By the accepted American Welding Society definition, soldering is a joining process wherein coalescence between metal parts is produced by heating to suitable temperatures, generally below 449°C / 840°F, and by using a filler metal having a liquidus not exceeding 449°C / 840°F and below the solidus of the base metals. The solder is usually distributed between the properly fitted surfaces of the joint by capillary attraction. Brazing, by the same definition, is a similar process accomplished at temperatures above 449°C / 840°F, but below the melting point of the metals to be joined. Welding requires that