Guidance for
ANSI/AAMI/ISO 10993-7:1995,
Biological evaluation of medical
devices—Part 7: Ethylene oxide
sterilization residuals
Abstract: This AAMI Technical Information Report (TIR) provides guidance to augment ANSI/AAMI/ISO 10993-7, Biological evaluation of medical devices—Part 7: Ethylene oxide sterilization residuals. This TIR is intended to assist those individuals using ANSI/AAMI/ISO 10993-7 in understanding the steps necessary to evaluate an ethylene oxide-sterilized device according to the standard and to help those individuals choose appropriate actions where alternatives are given. This TIR also provides limited guidance for the application of other parts of the ANSI/AAMI/ISO 10993 series of standards to the biological evaluation of ethylene oxide-sterilized medical devices.

Keywords: EO, EtO, allowable limits, ethylene chlorohydrin, ECH, ethylene glycol, EG, simulated-use extraction procedure
A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology.

Although the material presented in a TIR may need further evaluation by experts, there is value in releasing the information because of the immediate need for it by the industry and the professions.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard must be acted upon—either reaffirmed, revised, or withdrawn—and the action formally approved usually every 5 years but at least every 10 years. For a TIR, AAMI consults with a technical committee about 5 years after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI Technical Information Report may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at (800) 332-2264, ext. 217 or visit www.aami.org.
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at (800) 332-2264, ext. 217 or visit www.aami.org.
COMMITTEE REPRESENTATION

This technical information report was developed by the AAMI Sterilization Residuals Working Group under the auspices of the AAMI Sterilization Standards Committee.

The AAMI Sterilization Standards Committee has the following members:

Cochairs: Virginia C. Chamberlain, PhD
 William E. Young

Members:
 Carl W. Bruch, PhD, Consultant, Hudson, WI
 Virginia C. Chamberlain, PhD, Consultant, Hendersonville, NC
 Neal E. Danielson, D’s Enterprise, Wichita, KS
 Judith C. Dowler, Medical Devices Bureau, Health Canada, Ottawa, ON
 Frank R. Engley, Jr., PhD, University of Missouri, Columbia, MO
 Richard Nusbaum, Pennsylvania Engineering Company
 Barry F. J. Page, Consultant, Garner, NC
 Marimargaret Reichert, RN, MA, Reichert Consulting, Olmsted Falls, OH
 Janet K. Schultz, RN, Jan Schultz & Associates, Allison Park, PA
 James Whitbourne, Sterilization Technical Services
 James L. Whitby, MA, MB, FRCP, Univ. of Western Ontario, London, ON
 William E. Young, Baxter Healthcare Corp.

The AAMI Sterilization Residuals Working Group has the following members:

Cochairs: Donald E. Marlowe
 Barry F. J. Page

Members:
 Fran Akelewicz, CR Bard
 Krisann Anderson, St. Jude Medical
 Anne F. Booth, MS, Booth & Associates, Barrington, IL
 Richard A. Borders, PhD, Kimberly-Clark Corp.
 William C. Bradbury, PhD, Consultant, Sugarloaf, FL
 Trabue D. Bryans, Practical Consulting and Training, Kennesaw, GA
 Phil Cogdill, Boston Scientific
 Gary Cranston, Consulting & Technical Services
 Douglas D. Davie, Sterilization Validation Services
 Martha Ello, Baxter Healthcare Corp.
Louis M. Glasgow, Bausch & Lomb
Joel Gorski, PhD, North American Science Associates
Stanley Gross, U.S. Environmental Protection Agency
Arthur C. Harris, Chicago Sterilization Services
Deborah Havlik, Griffith Micro Science
Mizano Kebedee, Steris Corporation
George N. Lauri, American Home Products Corp./Sherwood Davis & Geck
Donald E. Marlowe, U.S. Food and Drug Administration
Alvin Melveger, PhD, AIM Technical Consulting, Flanders, NJ
Gregg A. Mosley, Biotest Laboratories
Pam Netzel, Ethox Corp.
Barry F. J. Page, Consultant, Garner, NC
Anthony N. Parisi, PhD, Johnson & Johnson Medical Inc.
James Sun, Becton Dickinson
James Whitbourne, Sterilization Technical Services
David F. Williamson, Abbott Laboratories
C. C. Woltz, Allied Signal

Alternates:
Edward Arscott, North American Science Associates
Thomas Barbolt, Ethicon/Johnson & Johnson
Elizabeth G. Bruette, CR Bard, Inc.
Duane Centola, Sterilization Technical Services
Stephen A. Conviser, Allied Signal
Adelle Dorrance, Becton Dickinson
Randal S. Fitzgerald, Ethox Corp.
Thomas L. Hansen, American Home Prod. Corp./Sherwood Davis & Geck
Doug Harbrecht, Scimed/Boston Scientific
Lawrence Hecker, PhD, Abbott Laboratories
Nelson Lao, U.S. Food and Drug Administration
Jennifer Lowell, Avent, Inc./ Kimberly-Clark Corp.
Ralph Makinen, CIH, Griffith Micro Science
Frank Peacock, Bausch & Lomb

NOTE—Participation by federal agency representatives in the development of this technical information report does not constitute endorsement by the federal government or any of its agencies.
This technical information report (TIR) was developed by the Task Group on Ethylene Oxide Sterilization Residuals of the AAMI Sterilization Residuals Working Group, under the auspices of the AAMI Sterilization Standards Committee. The Task Group has the following members:

Fran Akelewicz, CR Bard
Howard Cyr, FDA/CDRH/OST
Phil Cogdill, Boston Scientific
Adelle Dorrance, Becton Dickinson
Martha Ello, Baxter Healthcare Corp.
Zory Glaser, U.S. Pharmacopeial Convention
Lawrence Hecker, Abbott Laboratories
Donald E. Marlowe, FDA/CDRH/OST
Barry F. J. Page, Consultant, Garner, NC
Anthony N. Parisi, Johnson & Johnson Medical
Richard Schumway, Baxter Healthcare Corp.
Casimir Woss, PhD, C. Woss & Associates, Fox River Grove, IL
William E. Young, Baxter Healthcare Corp.

In Memoriam

The Sterilization Standards Committee and the Sterilization Residuals Working Group would like to gratefully acknowledge the contributions of the late Barbara Whittaker, PhD, Becton Dickinson, whose input and assistance contributed to the writing of this document.

Comments on this technical information report are invited and should be sent to AAMI, 3330 Washington Boulevard, Suite 400, Arlington, VA 22201-4598
GUIDANCE FOR ANSI/AAMI/ISO 10993-7: 1995, BIOLOGICAL EVALUATION OF MEDICAL DEVICES—PART 7: ETHYLENE OXIDE STERILIZATION RESIDUALS

Introduction

This AAMI TIR provides guidance on the application of parts of the ANSI/AAMI/ISO 10993 series of standards to the biological evaluation of medical devices that have been sterilized with ethylene oxide (EO). This TIR primarily addresses evaluation of devices according to ANSI/AAMI/ISO 10993-7:1995, Biological evaluation of medical devices—Part 7: Ethylene oxide sterilization residuals, but limited guidance is also given for other parts of the ANSI/AAMI/ISO 10993 series.

ANSI/AAMI/ISO 10993-7 specifies the requirements for establishing allowable limits for EO residues and analytical methods to show that an EO-sterilized device is in compliance with the allowable limits. Maximum allowable residues for ethylene chlorohydrin (ECH) when ECH has been found to be present in medical devices sterilized with EO are also specified. No exposure limits are set for ethylene glycol (EG) because risk assessment indicates that when EO residues are controlled, it is unlikely that biologically significant residues of EG are present. Dose to patient is the basis for establishing the allowable limits and the reference method for showing compliance with this standard. The introduction to ANSI/AAMI/ISO 10993-7 also notes that alternative materials and sterilization methods should have been considered during product development and design to minimize exposure to EO residues.

In addition to meeting the requirements of ANSI/AAMI/ISO 10993-7, an EO-sterilized device must meet the biological testing requirements of the other parts of the ANSI/AAMI/ISO 10993 series of standards. While this TIR does provide limited guidance relating to other parts of this series (particularly to ANSI/AAMI/ISO 10993-10, Biological evaluation of medical devices—Part 10: Tests for irritation and sensitization), it is not a complete guide for the biological evaluation of EO-sterilized devices. The requirements of the other parts of the ANSI/AAMI/ISO 10993 series should also be considered.

There are certain circumstances (e.g., major surgery) where the lifesaving nature of the therapy significantly alters the risk-benefit analysis of the use of an EO-sterilized medical device. The exposure limits given in ANSI/AAMI/ISO 10993-7 are based on risks and benefits associated with less critical circumstances. In consequence, there is scope for relaxation of the proposed limits in life-threatening situations where it is not possible to meet the specified limits.

The TIR includes a flow chart that is intended to assist a user in understanding the steps necessary to apply the standard. The TIR shows the decision points and provides guidance for choosing the appropriate actions where alternatives are given in the standard. Some of the guidance represents a practical means to apply the standard to different products based on factors such as: nature of exposure, duration of exposure, frequency of use, special situations of use (e.g., as cited in clause 4.3.4 of the standard), and product size. The flow chart is supplemented by more detailed text.
Clause 4.4 of the standard (ANSI/AAMI/ISO 10993-7:1995) gives the requirements for determining EO and ECH residues, and analytical procedures are described in normative annex B. Extraction conditions for the determination of residual EO are given in informative annex D. Guidance on developing an appropriate simulated-use extraction procedure is given in annex A to this TIR. This enables users to develop and document the rationale for an appropriate simulated-use extraction procedure for their EO-sterilized products.

This text should be used in conjunction with the flow chart appended as figure 1. The flow chart is annotated and the text here describes the basis for the decision taken from the standard.

NOTE—Where the statement Reduce EO is made in this TIR, accomplish this reduction by additional aeration of the medical device.

For a complete copy of this AAMI document, contact AAMI at (800) 332-2264, ext. 217 or visit www.aami.org.