This is a preview of "ANSI/AAMI/ISO 11137-...". Click here to purchase the full version from the ANSI store.

American National Standard

ANSI/AAMI/ISO 11137-3:2006/(R)2010

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

> For a complete copy of this AAMI document, contact AAMI at (877), 249-8226 Sterilization, of a health care products—Radiation— Part 3: Guidance on dosimetric aspects

The Objectives and Uses of AAMI Standards and **Recommended Practices**

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI's technical development program derive from AAMI's overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI's view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be always with the low second constraint of the specific needed by the user he including performance characteristics, instructions for use warnings in a pur Particular care should be taken in applying a product standard to and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate at (877s afet and performance criteria defined in a standard, professional uniformity in reporting; reaching consensus on these tests ican/WW ajudgment must be used in applying these criteria to existing equiprepresent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a fume of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards health care professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never *replace* responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains

existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the ment. No single source of information will serve to identify a particular product as "unsafe". A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provision.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the Manager for Technical Development. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.

American National Standard

ANSI/AAMI/ISO 11137-3:2006/(R)2010 (Combined revision [in whole or in part] of ANSI/AAMI/ISO 11137:1994 and A1:2002 and AAMI TIR29:2002)

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

> For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.

Sterilization of health care products—Radiation— Part 3: Guidance on dosimetric aspects

Approved 9 December 2005 by Association for the Advancement of Medical Instrumentation

Approved 23 December 2005 and Reaffirmed 20 April 2010 by American National Standards Institute

Abstract: Guidance on dosimetry for radiation sterilization of health care products.

Keywords: health care products, medical equipment, sterilization, radiation, gamma, electron beam, bremsstrahlung, x-ray, dosimeter, dosimetry

AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are *voluntary*, and their application is solely within the discretion and professional judgment of the user of the document Occasionally voluntary technical documents are adopted by government regulatory, agencies, or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.

Published by

Association for the Advancement of Medical Instrumentation 1110 N. Glebe Road, Suite 220 Arlington, VA 22201-4795

© 2006 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

This publication is subject to copyright claims of ISO, ANSI, and AAMI. No part of this publication may be reproduced or distributed in any form, including an electronic retrieval system, without the prior written permission of AAMI. All requests pertaining to this draft should be submitted to AAMI. It is illegal under federal law (17 U.S.C. § 101, *et seq.*) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of \$100,000 per offense. For permission regarding the use of all or any part of this document, contact AAMI, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795. Phone: (703) 525-4890; Fax: (703) 525-1067.

Printed in the United States of America

ISBN 1-57020-255-9

This is a preview of "ANSI/AAMI/ISO 11137-...". Click here to purchase the full version from the ANSI store.

Contents

Glossary of equivalent standardsiv			
Commi	Committee representation		
Backgr	Background of AAMI adoption of ISO 11137-3:2006		
Forewo	Foreword		
Introdu	ntroduction		
1	Scope	1	
2	Normative references	1	
3	Terms and definitions	1	
4	Measurement of Boseiew edition of an AAMI guidance document and is	1	
5	intended to allow potential purchasers to evaluate the content of the Selection and calibration of dosimetry systems	2	
5.1 5.2	General document before making a purchasing decision.	2 2	
5.3	Calibration of dosimetry systems copy of this AAMI document,	2	
6	Establishing the maximum acceptable dose 77) 249-8226	2	
7	or visit www.aami.org.	3	
8	Installation qualification	4	
9	Operational qualification	5	
9.1	General	5	
9.2 9.3	Electron beam irradiators	5 6	
9.4	X-ray irradiators	8	
10	Performance qualification	9	
10.1 10.2	General	9 10	
10.3	Electron beam	11	
11	Routine monitoring and control	12	
11.1	General Frequency of dose measurements	12 12	
Annex	A (informative) Mathematical modelling	13	
Bibliography			

Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard. Note: Documents are sorted by international designation.

Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

International designation	U.S. designation	Equivalency
IEC 60601-1:2005	ANSI/AAMI ES60601-1:2005	Major technical variations
IEC 60601-1-2:2001 and Amendment 1:2004	ANSI/AAMI/IEC 60601-1-2:2001 and Amendment 1:2004	Identical
IEC 60601-2-04:2002	ANSI/AAMI DF80:2003	Major technical variations
IEC 60601-2-19:1990 and preview Amendment 17:1996 ed to allow po	ANSI/AAMI 1136:2004 tential purchasers to evaluate the	Major technical variations content of the
IEC 60601-2-20:1990 and OCUMENT Amendment 1:1996	ANSI/AAMIN51/2004 purchasing decis	Major technical variations
IEC 60601-2-21:1994 and For a co Amendment 1:1996	ANSI/AAMI/IEC 60601-2-21/and documer Amendment 1:2000 (consolidated texts)	ן t dentical
IEC 60601-2-24:1998	ANSI/AAMI ID26:2004 ord	Major technical variations
IEC TR 60878:2003	ANSI/AAMI/IEC TIR60878:2003	Identical
IEC TR 62296:2003	ANSI/AAMI/IEC TIR62296:2003	Identical
IEC TR 62348:200x ¹	ANSI/AAMI/IEC TIR62348:2006	Identical
ISO 5840:2005	ANSI/AAMI/ISO 5840:2005	Identical
ISO 7198:1998	ANSI/AAMI/ISO 7198:1998/2001/(R)2004	Identical
ISO 7199:1996	ANSI/AAMI/ISO 7199:1996/(R)2002	Identical
ISO 10993-1:2003	ANSI/AAMI/ISO 10993-1:2003	Identical
ISO 10993-2:1992	ANSI/AAMI/ISO 10993-2:1993/(R)2001	Identical
ISO 10993-3:2003	ANSI/AAMI/ISO 10993-3:2003	Identical
ISO 10993-4:2002	ANSI/AAMI/ISO 10993-4:2002	Identical
ISO 10993-5:1999	ANSI/AAMI/ISO 10993-5:1999	Identical
ISO 10993-6:1994	ANSI/AAMI/ISO 10993-6:1995/(R)2001	Identical
ISO 10993-7:1995	ANSI/AAMI/ISO 10993-7:1995/(R)2001	Identical
ISO 10993-9:1999	ANSI/AAMI/ISO 10993-9:1999/(R)2005	Identical
ISO 10993-10:2002	ANSI/AAMI BE78:2002	Minor technical variations
ISO 10993-11:1993	ANSI/AAMI 10993-11:1993	Minor technical variations
ISO 10993-12:2002	ANSI/AAMI/ISO 10993-12:2002	Identical
ISO 10993-13:1998	ANSI/AAMI/ISO 10993-13:1999/(R)2004	Identical
ISO 10993-14:2001	ANSI/AAMI/ISO 10993-14:2001	Identical
ISO 10993-15:2000	ANSI/AAMI/ISO 10993-15:2000	Identical
ISO 10993-16:1997	ANSI/AAMI/ISO 10993-16:1997/(R)2003	Identical
ISO 10993-17:2002	ANSI/AAMI/ISO 10993-17:2002	Identical
ISO 10993-18:2005	ANSI/AAMI BE83:2006	Major technical variations
ISO TS 10993-19:200x ¹	ANSI/AAMI/ISO TIR10993-19:2006	Identical

International designation	U.S. designation	Equivalency
ISO TS 10993-20:200x ¹	ANSI/AAMI/ISO TIR10993-20:2006	Identical
ISO 11135:1994	ANSI/AAMI/ISO 11135:1994	Identical
ISO 11137-1:2006	ANSI/AAMI/ISO 11137-1:2006	Identical
ISO 11137-2:200x ¹	ANSI/AAMI/ISO 11137-2:2006	Identical
ISO 11137-3:2006	ANSI/AAMI/ISO 11137-3:2006	Identical
ISO 11138-1: 200x ¹	ANSI/AAMI/ISO 11138-1:2006	Identical
ISO 11138-2: 200x ¹	ANSI/AAMI/ISO 11138-2:2006	Identical
ISO 11138-3: 200x ¹	ANSI/AAMI/ISO 11138-3:2006	Identical
ISO 11138-4: 200x ¹	ANSI/AAMI/ISO 11138-4:2006	Identical
ISO 11138-5: 200x ¹	ANSI/AAMI/ISO 11138-5:2006	Identical
ISO TS 11139:2006	ANSI/AAMI/ISO 11139:2006	Identical
ISO 11140-1:2005	ANSI/AAMI/ISO 11140-1:2005	Identical
ISO 11140-5:2000	ANSI/AAMI ST66:1999	Major technical variations
ISO 11607-1:2006	ANSI/AAMI/ISO 11607-1:2006	Identical
ISO 11607-2:2006 is a preview	ANSPAAMI/ISO 116071292006ance docur	ngentigand is
ISO 11737-12006 ded to allow po	tansia ami/isbaars to obtain the	Chentical of the
ISO 11737-2:1998 document	ANSI/AAM/18019737211998asing decis	Indentical
ISO 11737-3:2004	ANSI/AAMI/ISO 11737-3:2004	Identical
ISO 13485:2003 For a co	MANSI/AAMI/ISO 9348532003 MI documer	¹ Identical
ISO 13488:1996 CO	13488:19969-8226	Identical
ISO 14155-1:2003	ANSI/AAMI/ISO/14135-112003	Identical
ISO 14155-2:2003	ANSI/AAMI/ISO 14155-2:2003	Identical
ISO 14160:1998	ANSI/AAMI/ISO 14160:1998	Identical
ISO 14161:2000	ANSI/AAMI/ISO 14161:2000	Identical
ISO 14937:2000	ANSI/AAMI/ISO 14937:2000	Identical
ISO TR 14969:2004	ANSI/AAMI/ISO TIR14969:2004	Identical
ISO 14971:2000 and A1:2003	ANSI/AAMI/ISO 14971:2000 and A1:2003	Identical
ISO 15223:2000, A1:2002, and A2:2004	ANSI/AAMI/ISO 15223:2000, A1:2001, and A2:2004	Identical
ISO 15225:2000 and A1:2004	ANSI/AAMI/ISO 15225:2000/(R)2006 and A1:2004/(R)2006	Identical
ISO 15674:2001	ANSI/AAMI/ISO 15674:2001	Identical
ISO 15675:2001	ANSI/AAMI/ISO 15675:2001	Identical
ISO TS 15843:2000	ANSI/AAMI/ISO TIR15843:2000	Identical
ISO 15882:2003	ANSI/AAMI/ISO 15882:2003	Identical
ISO TR 16142:2006	ANSI/AAMI/ISO TIR16142:2006	Identical
ISO 17664:2004	ANSI/AAMI ST81:2004	Major technical variations
ISO 17665-1:200x ¹	ANSI/AAMI/ISO 17665-1:2006	Identical
ISO 18472:200x ¹	ANSI/AAMI/ISO 18472:2006	Identical
ISO TS 19218:2005	ANSI/AAMI/ISO 19218:2005	Identical
ISO 25539-1:2003 and A1:2005	ANSI/AAMI/ISO 25539-1:2003 and A1:2005	Identical

¹In production

Committee representation

Association for the Advancement of Medical Instrumentation

Radiation Sterilization Working Group

The adoption of ISO 11137-1:2006 as an AAMI standard was initiated by the Radiation Sterilization Working Group of the AAMI Sterilization Standards Committee (AAMI/ST), which also functions as a U.S. Technical Advisory Group to the relevant work in the International Organization for Standardization (ISO). U.S. representatives from the AAMI Radiation Sterilization Working Group (U.S. Sub-TAG for ISO/TC 198/WG 2), chaired by Lisa Foster and Byron Lambert, played an active part in developing the ISO Standard.

Committee approval of this document does not necessarily imply that all committee members voted for its approval.

At the time this document was published to AAMIARadiation Sterilization Working Group had the following membersided to allow potential purchasers to evaluate the content of the

Lisa Foster cument before making a purchasing decision. Byron J. Lambert, PhD Cochairs Chris B. Anderson, St Jude Medical Inc. Members Leonard S. Berman, PhD, Pall Medical of this AAMI document, Paul William Boentges, BS, Cardinal Health (MP&S) Anne F. Booth, MS, Conmed Corporation John Broad, NAMSA or visit www.aami.org. Trabue D. Bryans, AppTec Virginia C. Chamberlain, PhD, VC Chamberlain & Associates (Independent Expert) Rod Chu, MDS Nordion Gary N. Cranston, Consulting & Technical Svs/PCS Greg Crego, Ethox Corporation Kate Davenport, Northview Biosciences Douglas D. Davie, Sterilization Validation Services Brian R. Drumheller, CR Bard Barry P. Fairand, PhD (Independent Expert) Lisa Foster, Sterigenics International Ruth Garcia, Steris Corporation Joyce M. Hansen, JM Hansen & Associates (Independent Expert) Thomas L. Hansen, Terumo Medical Corporation Doug F. Harbrecht, Boston Scientific Corporation Deborah A. Havlik, Hospira Inc Arthur H. Heiss, PhD, Bruker BioSpin Corporation Craig M. Herring, Johnson & Johnson Carolyn L. Kinsley, Pharmaceutical Systems Inc. Byron J. Lambert, PhD, Guidant Corporation/Cardiac Rhythm Management Jeff Martin, Alcon Laboratories Inc David Ford McGoldrick, BS, Abbott Laboratories James E. McGowan, Jr., BS, MBA, Sterility Assurance Laboratories Inc. Joseph M. Mello, Ethide Laboratories Inc. Russell D. Mills, Zimmer Inc. Gerry A. O'Dell, MS, Gerry O'Dell Consulting (Independent Expert) Frank Peacock, Jr., Bausch & Lomb Inc. Bryant Pearce, Clearant Inc. Manuel Saavedra, Jr., Kimberly-Clark Corporation Zenius V. Seliokas, Stericon Inc. Jon Seulean, Cobe Sterilization Services Inc. Harry L. Shaffer, Sterilization Consulting Services William N. Thompson, TYCO Healthcare/Kendall Richard L. Weisman, Fresenius Medical Care NA Dialysis Products Division

Alternates	Patrick B. Weixel, FDA/CDRH James L. Whitby, MA, MB, FRCP, University of Western Ontario (Independent Expert) Thelma Wilcott, Becton Dickinson & Company John Andrew Williams, BS, Baxter Healthcare Corporation Martell Kress Winters, BS, SM, Nelson Laboratories Inc. Lisa Baryschpolec, Johnson & Johnson Harry F. Bushar, PhD, FDA/CDRH Charles Cogdill, Boston Scientific Corporation John DiCaro, TYCO Healthcare/Kendall Joyce Kay Elkins, Zimmer Inc. Niki Fidopiastis, Sterigenics International Donna Horner, Guidant Corporation/Cardiac Rhythm Management Joseph A. Hutson, Cardinal Health (MP&S) Orlando C. Johnson, Hospira Inc. Bert Kingsbury, Terumo Medical Corporation Ezra Koski, A, Cobe Sterilization Services Inc. Mary Malarkey, FDA/CDRH Mary S. Mayo, CR Bard Consuelo Lorraine McChesney, BS, Alcon Laboratories Inc. Dave Parente, NAMSA Thinothy Bamsey, BS, NothviewBiesciencesIII guidance document and is Mark Sevbold, Baxter Healthcare Corporation to evaluate the content of the Raify Stick, AppTec John W. Walkeri Steris Corporation king a purchasing decision. Wendy Wangsgard, PhD, Nelson Laboratories Inc. David Weppner, Ethox Corporation Kard AMI at (877) 249-8226 AAMI Sterilization Standards Committee
Cochairs	Victoria M. Hitchins, PhD
Members	 Trabue D. Bryans, AppTec Virginia C. Chamberlain, PhD, VC Chamberlain & Associates (Independent Expert) Nancy Chobin, RN, CSPDM, St. Barnabas Healthcare System (Independent Expert) Anne M. Cofiell, CRCST, FCS, International Association of Healthcare Central Service Materiel Management Charles Cogdill, Boston Scientific Corporation Ramona Conner, RN, MSN, CNOR, Association of Perioperative Registered Nurses Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology Kimbrell Darnell, CR Bard Lisa Foster, Sterigenics International James M. Gibson, Jr., JM Gibson Associates Barbara J. Goodman, RN, BS, CNOR (Independent Expert) Joel R. Gorski, PhD, NAMSA Deborah A. Havlik, Hospira Inc. Victoria M. Hitchins, PhD, FDA/CDRH Richard M. Johnson, MSc, BSc, Abbott Laboratories Lois Atkinson Jones, MS (Independent Expert) Byron J. Lambert, PhD, Guidant Corporation/Cardiac Rhythm Management Colleen Patricia Landers, RN, Canadian Standards Association David Liu, Johnson & Johnson Jeff Martin, Alcon Laboratories Inc. Patrick J. McCormick, PhD, Bausch & Lomb Inc. Thomas K. Moore, Getinge USA Barry F.J. Page, Barry Page Consulting (Independent Expert) Nancy J. Rakiewicz, Ethox Corporation Phil M. Schneider, 3M Healthcare Michael H. Scholla, Dupont Nonwovens Mark Seybold, Baxter Healthcare Corporation Andrew Sharavara, Propper Manufacturing Co Inc.

	Frank Sizemore, American Society for Healthcare Central Service Professionals
	Gregory O. Stecklein, MS, MSM, Cardinal Health (MP&S)
	William N. Thompson, TYCO Healthcare/Kendall
	John W. Walker Staris Corporation
	John W. Waiter, Clens Objectation
	James L. Wildett, Baster Bioliticare & Company
	Ineima Wilcott, Becton Dickinson & Company
	Martell Kress Winters, BS, SM, Nelson Laboratories Inc.
	William E. Young (Independent Expert)
Alternates	Lloyd Brown, TYCO Healthcare/Kendall
	Lina C. Bueno, Dupont Nonwovens
	Craig M. Herring, Johnson & Johnson
	Clark W. Houghtling, Steris Corporation
	Danny Hutson, Cardinal Health (MP&S)
	Jim Kaiser, Bausch & Lomb Inc.
	Susan G. Klacik, AS, BS, International Association of Healthcare Central Service Materiel
	Management A A A A A A A A A A A A A A A A A A A
	Joseph J. Lasich, BS, Alcon Laboratories Inc.
	Chiu Lin, PhD, FDA/CDRH
	Lisa N. Macdonald, Becton Dickinson & Company
	Ralph Makinen, Guidant Corporation/Cardiac Rhythm Management
	Mary S. Mayo, CR Bard
	David Ford McGoldrick, BS, Abbott Laboratories
	Jerry R. Nelson, MS, PhD, Nelson Laboratories Incidence document and is
	Jeff Peltier. Boston Scientific Corporation
	intended to the content of the
	Mike Sadowski Baxter Healtheare Corporation urchasing decision
	Ralph Stick AppTec
	Jason Voisinet. Ethox Corporation
	Valerie Welten Hospital Diete copy of this AAMI document.
	William T Young Steringerics International 77 240 8226
	······································

NOTE—Participation by federal agency representatives in the development of this document does not constitute endorsement by the federal government or any of its agencies.

Background of AAMI adoption of ISO 11137-3:2006

The International Organization for Standardization (ISO) is a worldwide federation of national standards bodies. The United States is one of the ISO members that took an active role in the development of this standard.

The first edition of ISO 11137 was developed by ISO Technical Committee 198 to fill a need for an international standard for radiation sterilization of health care products. The standard was published in 1995 and was followed by several technical reports developed in ISO or in AAMI primarily to cover additional dose setting methods. During its systematic review of ISO 11137:1995 (adopted in the U.S. as ANSI/AAMI/ISO 11137:1994), ISO/TC 198 decided to revise the document by splitting it into three parts under the general title Sterilization of health care products-Radiation. The three parts are

- Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices;

Part 2: Establishing the sterilization dose; and This is a preview edition of an AAMI guidance document and is Part 3: Guidance on dosimetric aspects, purchasers to evaluate the content of the

In addition, content from some of the technical reports developed since the first edition was published has been incorporated into the latest standards.

Part 3 of ISO 11137 presents a significant expansion and Ambrovement in guidance for the radiation sterilization community compared to Annex & of ISO (81/137:1995) The guidance follows the format of Part 1 for ease of reference. ISO 11137-3 provides detailed guidance for dosimetric aspects of:

- Establishing the maximum dose (product qualification),
- Establishing the sterilization dose,
- Installation qualification,
- Operational qualification, and
- Performance gualification

Additionally, new concepts of mathematical modeling are addressed in an Annex.

U.S. participation in ISO/TC 198 is organized through the U.S. Technical Advisory Group for ISO/TC 198, administered by the Association for the Advancement of Medical Instrumentation (AAMI). The United States made a considerable contribution to this standard.

Concurrent with the development of the U.S. position on the ISO 11137 series, the AAMI Radiation Sterilization Working Group (AAMI ST/WG 02) decided to adopt the three parts verbatim. Together, these documents supersede ANSI/AAMI/ISO 11137:1994 (and 2002 amendment), AAMI TIR27:2001, AAMI/ISO TIR13409:1996 (and 2000 amendment), and AAMI/ISO TIR15844:1998.

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data comes to light. Suggestions for improving this standard are invited. Comments on this standard are invited and should be sent to AAMI, Attn: Standards Department, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795.

NOTE—Beginning with the ISO foreword on page x, this American National Standard is identical to ISO 11137-3:2006.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any of all such patent rights.

ISO 11137-3 was prepared by Technical Committee ISO/TEC-198/ Sterilization of health care product.

contact AAMI at (877) 249-8226

This first edition, together with ISO 11137-1 and ISO 11137-2, cancels and replaces ISO 11137:1995.

ISO 11137 consists of the following parts, under the general title *Sterilization of health care products* — *Radiation*:

- Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices
- Part 2: Establishing the sterilization dose
- Part 3: Guidance on dosimetric aspects

Introduction

An integral part of radiation sterilization is the ability to measure dose. Dose is measured during all stages of development, validation and routine monitoring of the sterilization process. It has to be demonstrated that dose measurement is traceable to a national or International Standard, that the uncertainty of measurement is known, and that the influence of temperature, humidity and other environmental considerations on dosimeter response is known and taken into account. Process parameters are established and applied based on dose measurements. This part of ISO 11137 provides guidance on the application of dose measurements (dosimetry) during all stages of the sterilization process.

ISO 11137-1 describes requirements that, if met, will provide a radiation sterilization process, intended to sterilize medical devices, which has appropriate microbicidal activity. Furthermore, compliance with the requirements helps ensure that this activity is both reliable and reproducible so that predictions can be made, with reasonable confidence that there is a low devel of probability of there being a viable microorganism present on product after sterilization.

Generic requirements of the quality management system for design and development, production, installation and servicing are given in ISO 9001 and particular requirements for quality management systems for medical device production are given in ISO 13485. The standards for quality management systems recognize that, for certain processes used in manufacturing or reprocessing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of the sterilization process monitored routinely and the equipment maintained.

Requirements in regard to dosimetry are given in ISO 11137-1 and ISO 11137-2. This part of ISO 11137 gives guidance to these requirements. The guidance given is not normative and is not provided as a checklist for auditors. The guidance provides explanations and methods that are regarded as being suitable means for complying with the requirements. Methods other than those given in the guidance may be used, if they are effective in achieving compliance with the requirements of ISO 11137-1.

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org. **American National Standard**

ANSI/AAMI/ISO 11137-3:2006/(R)2010

Sterilization of health care products—Radiation— Part 3: Guidance on dosimetric aspects

1 Scope

This part of ISO 11137 gives guidance on the requirements in ISO 11137 parts 1 and 2 relating to dosimetry. Dosimetry procedures related to the development, validation and routine control of a radiation sterilization process are described.

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

> For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.