Objectives and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI’s technical development program derive from AAMI’s overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI’s view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can be a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, reference tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

Particular care should be taken in applying a product standard to existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identity a particular product as "unsafe". A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provision.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.
Abstract: This recommended practice covers the safe and effective use of ethylene oxide as a sterilant in health care facilities. The provisions of this document are intended to promote sterility assurance, help minimize occupational exposure to ethylene oxide, and guide health care personnel in the proper use of processing equipment.

Keywords: chemical sterilization, gas sterilization, ethylene oxide emission control, ethylene oxide monitoring
AAMI Recommended Practice

This Association for the Advancement of Medical Instrumentation (AAMI) recommended practice implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI recommended practice does not in any respect preclude anyone, whether they have approved the recommended practice or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the recommended practice. AAMI recommended practices are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI recommended practice may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this recommended practice no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards and recommended practices by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.
Contents

Glossary of equivalent standards .. ix
Committee representation ... xi
Acknowledgments ... xiii

Introduction: Need for the recommended practice .. 1

1 Scope ... 2

1.1 General .. 2
1.2 Inclusions ... 2
1.3 Exclusions ... 2

2 Definitions, symbols, and abbreviations .. 3

3 Design considerations ... 11

3.1 General rationale ... 11
3.2 Centralization .. 11
3.3 Containment areas .. 11
3.4 Routing of traffic ... 12
3.5 Sterilizer access area ... 12
3.6 Storage of supplies ... 13
3.7 Temperature ... 13
3.8 Relative humidity ... 13

3.9 Ventilation recommendations for areas housing EO sterilization and aeration equipment 13

3.9.1 General considerations .. 13
3.9.2 Local exhaust ventilation ... 14
3.9.3 General room ventilation ... 15

3.10 Emergency eyewash and shower equipment .. 16

3.11 Environmental discharge controls .. 17

3.11.1 Ethylene oxide .. 17
3.11.2 Ethylene glycol .. 17
3.11.3 Hydrochlorofluorocarbons .. 17

4 Personnel considerations ... 19

4.1 General rationale ... 19
4.2 Qualifications ... 19

4.2.1 Supervisory personnel .. 19
4.2.2 Sterilizer and aeration operators ... 20

4.3 Training and continuing education .. 20

4.3.1 Sterile processing personnel .. 20
4.3.2 Other personnel ... 21

4.4 Personnel health ... 21

4.4.1 General considerations .. 21
4.4.2 Information concerning the potential hazards of exposure to EO ... 22
4.4.3 Medical surveillance and treatment .. 22
4.4.4 First aid ... 23

4.5 Attire .. 23

4.5.1 General considerations .. 23
4.5.2 Decontamination area ... 24
4.5.3 Service personnel ... 24
4.5.4 Prevention of occupational exposure to EO .. 25

5 Receiving ... 27

5.1 General rationale ... 27
5.2 Receiving of purchased or loaner items ... 27

5.2.1 General considerations .. 27
5.2.2 Newly purchased reusable items and repaired reusable items .. 27
5.2.3 Rigid sterilization container systems ... 27
5.2.4 Disposable items ... 28
5.3 Disposition of sterile items (issued but not used) .. 28

6 Handling, collection, and transport of contaminated items .. 29

6.1 General rationale ... 29
6.2 Separation of waste and reusable items at point of use .. 29
6.3 Care and handling of contaminated reusable items at point of use 29
6.4 Containment .. 30
6.5 Transport ... 31
6.5.1 Transportation scheduling and routes ... 31
6.5.2 Transportation equipment ... 31
6.5.3 Hand transport ... 31
6.5.4 Dedicated lifts ... 31
6.5.5 Transport between buildings .. 31
6.5.6 Off-site transportation .. 32

7 Cleaning and other decontamination processes .. 33

7.1 General rationale ... 33
7.2 Policies, procedures, and manufacturers’ instructions .. 33
7.2.1 Policies and procedures .. 33
7.2.2 Manufacturers’ instructions .. 33
7.3 Presoaking .. 34
7.4 Disassembly .. 34
7.4.1 Sorting and disassembly of instrumentation ... 34
7.4.2 Disassembly of rigid sterilization container systems .. 34
7.5 Cleaning .. 35
7.5.1 General considerations .. 35
7.5.2 Cleaning agents ... 35
7.5.3 Methods of cleaning ... 36
7.5.4 Rinse .. 37
7.5.5 Verification of the cleaning process .. 38
7.5.6 Cleaning of instruments .. 38
7.5.7 Utensils .. 39
7.5.8 Reusable textiles .. 39
7.5.9 Rigid sterilization container systems ... 39
7.6 Microbial processes .. 40
7.6.1 General considerations .. 40
7.6.2 Processes to decontaminate devices for safe handling 41
7.6.3 Terminal sterilization processes to prepare devices for the next patient use 43

7.7 Servicing and repair of devices in the health care facility .. 44
7.7.1 General considerations .. 44
7.7.2 Potential for exposure ... 44
7.7.3 Protective measures for service personnel ... 45
7.7.4 Postexposure program .. 45
7.7.5 Devices that cannot be repaired in-house .. 45

8 Packaging, preparation, and sterilization ... 47

8.1 General rationale ... 47
8.2 Items suitable for EO sterilization .. 47
8.3 Preconditioning (humidification) ... 47
8.4 Packaging .. 47
8.4.1 Selection of packaging materials .. 47
8.4.2 Packaging configurations and preparation ... 48
8.5 Loading the sterilizer ... 49
8.5.1 Load composition .. 49
8.5.2 Load configuration ... 49
8.6 Sterilization parameters ... 49
8.6.1 General considerations .. 49
8.6.2 Sterilizer manufacturer’s instructions ... 49
8.6.3 Device and packaging manufacturers’ instructions .. 50
8.6.4 Monitoring ... 50
8.7 Unloading the sterilizer ..50
 8.7.1 General considerations...50
 8.7.2 Sterilizers without purge cycles ..50
 8.7.3 Sterilizers with purge cycles ...50
 8.7.4 Sterilizers with integral aeration ..50
 8.7.5 Sterilizers with "detoxification" ...51
 8.7.6 Handling of EO-sterilized items before aeration51
8.8 Aeration recommendations ...51
 8.8.1 General considerations...51
 8.8.2 Metal and glass items ...51
 8.8.3 Aeration capacity ...52
 8.8.4 Aeration times ...52
8.9 Sterile storage..52
 8.9.1 Handling and inspection ..52
 8.9.2 Sterility maintenance covers ...52
 8.9.3 Storage facilities ...53
 8.9.4 Shelf life ...54
8.10 Distribution ..54
 8.10.1 Handling and inspection ...54
 8.10.2 Distribution containers ...54
9 Installation, venting, routine care, and maintenance of EO sterilization and aeration equipment and EO gas sources ...55
 9.1 General rationale ..55
 9.2 Installation ...55
 9.2.1 Regulatory requirements ..55
 9.2.2 Manufacturer's instructions ..55
 9.2.3 Equipment location ..55
 9.3 Installation testing ..55
 9.3.1 Sterilizers ...55
 9.3.2 Emission control and ventilation systems55
 9.4 Venting of EO sterilizers ..56
 9.4.1 General considerations ..56
 9.4.2 Sterilizers venting to the outside atmosphere56
 9.4.3 Sterilizers venting to a sanitary floor drain57
 9.4.4 Sterilizers without exhaust to the outside atmosphere or a sanitary floor drain57
 9.4.5 Ventilation of EO gas cylinders58
 9.5 Venting of EO aeration cabinets ...58
 9.5.1 Vent lines ..58
 9.5.2 Equipment modifications ...58
 9.6 Ventilation system alarms ..58
 9.7 Maintenance of EO sterilizers, aeration, emission control systems, and ventilation systems ...58
 9.7.1 Manufacturer's instructions ..58
 9.7.2 Routine care of sterilizers and aeration59
 9.7.3 Preventive maintenance ...59
 9.8 Storage and handling of EO gas sources60
 9.8.1 Unit-dose containers of 100 % EO60
 9.8.2 Storage and handling of EO gas cylinders (tanks) and supply line filters61
 9.9 EO leaks and spills ..62
 9.9.1 General considerations ..62
 9.9.2 Emergency team ...62
 9.9.3 Emergency plan ..62
 9.9.4 First aid ..63
 9.10 Personal protective equipment ..64
 9.11 Equipment manuals ..64
10 Quality control ..65
 10.1 General rationale ..65
 10.2 Monitoring of mechanical cleaning equipment65
 10.3 Product identification and traceability65
 10.3.1 Lot control numbers ..65
 10.3.2 Sterilizer records ..65
 10.3.3 Expiration dating ..66
10.4 Overview of sterilization process monitoring ... 66
10.5 Sterilization process monitoring devices .. 68
 10.5.1 Physical monitors .. 68
 10.5.2 Chemical indicators .. 68
 10.5.3 Biological indicators ... 70
 10.5.4 Process challenge devices ... 71
10.6 Routine load release ... 71
 10.6.1 Process monitoring devices ... 71
 10.6.2 Release criteria for nonimplants ... 72
 10.6.3 Release criteria for implants .. 72
 10.6.4 Sterilization process failures ... 72
10.7 Routine sterilizer efficacy monitoring .. 73
 10.7.1 General considerations .. 73
 10.7.2 Composition of the PCD (routine BI test pack) ... 73
 10.7.3 Placement of the PCD (routine BI test pack) .. 73
 10.7.4 Test procedure ... 75
 10.7.5 Acceptance criteria ... 75
 10.7.6 Positive BI results .. 75
10.8 Qualification testing .. 76
 10.8.1 General considerations .. 76
 10.8.2 Composition of the PCD (challenge BI test pack) .. 77
 10.8.3 Placement of the PCDs (challenge BI test packs) .. 79
 10.8.4 Test procedure ... 80
 10.8.5 Acceptance criteria ... 80
 10.8.6 Positive BIs ... 80
10.9 Periodic product quality assurance testing of routinely processed items 82
 10.10 Periodic product quality assurance testing of rigid sterilization container systems 82
 10.10.1 General considerations ... 82
 10.10.2 Responsibilities of the manufacturer ... 82
 10.10.3 User responsibilities ... 84
10.11 Aeration of PCDs ... 86
10.12 Product recalls .. 86
 10.12.1 General considerations ... 86
 10.12.2 Recall procedure ... 86
 10.12.3 Recall order .. 86
 10.12.4 Recall report .. 87
10.13 Quality process improvement ... 87
 10.13.1 General rationale .. 87
 10.13.2 Quality process... 87
11 Environmental and employee monitoring ... 89
 11.1 General rationale .. 89
 11.2 Instrumentation .. 89
 11.2.1 Selection of monitoring methods ... 89
 11.2.2 Reliability and use of instrumentation ... 89
 11.3 Procedures .. 89
 11.3.1 Monitoring sites .. 89
 11.3.2 Frequency of monitoring ... 90
 11.3.3 Sterilizer system leak checks .. 90
 11.3.4 Ventilation system monitoring ... 90
 11.3.5 Short-term exposures ... 91
 11.4 Calculations and interpretation of data .. 91
 11.5 Record keeping ... 92

Annexes

A Occupational exposure to ethylene oxide, final standard (29 CFR 1910.1047) 95
B Ethylene oxide and hydrochlorofluorocarbon emission control technologies 125
C Processing CJD-contaminated patient care equipment and environmental surfaces 126
D Selection and use of chemical disinfectants .. 127
E User verification of cleaning processes...133
F Thermal disinfection ... 138
G Devices returned to the manufacturer ..139
H Round-robin study of the PCD (routine BI test pack)145
I Development of a prepurchase evaluation protocol for rigid sterilization container systems ...147
J Selecting equipment or services for monitoring airborne ethylene oxide at an EO sterilization facility153
K Bibliography and cited references ..163

Tables
1 Packaging for EO sterilization ...48
2 Sterilization process monitoring recommendations ...67
3 Simulated loads ...79

D.1 Levels of disinfection according to type of microorganism129
D.2 Occupational exposure limits for some chemical sterilants and disinfectants ...132
E.1 In-use tests available to assess efficacy of cleaning of medical devices136
E.2 In-use tests available to assess efficacy of washer-disinfectors used for medical device reprocessing ...137
H.1 Mean kill times (minutes) and standard deviations for BIs inside the test pack vs. outside the test pack ...146

Figures
1 Example of an EO sterilization containment area ...12
2 Microbicidal processes and use of PPE ..41
3 Preparation of the PCD (routine BI test pack) (drawing not to scale)74
4 Placement of BI in syringe ..78
5 Some components of the PCD (challenge BI test pack)78
6 Placement of components in PCD (challenge BI test pack)79
7 Placement of PCDs (challenge BI test packs) ..81
8 Example of placement of BIs and CIs in test rigid sterilization container system ...85
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard. NOTE: Documents are sorted by international designation.

Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
<tbody>
<tr>
<td>International designation</td>
<td>U.S. designation</td>
<td>Equivalency</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
Committee representation

Association for the Advancement of Medical Instrumentation

AAMI Ethylene Oxide Sterilization Hospital Practices Working Group

This recommended practice was developed by the Ethylene Oxide Sterilization Hospital Practices Working Group, under the auspices of the AAMI Sterilization Standards Committee. Approval of the recommended practice does not necessarily mean that all working group members voted for its approval. At the time this document was published, the AAMI Ethylene Oxide Sterilization Hospital Practices Working Group had the following members:

Co-chairs: Jacqueline Daley
Phil M. Schneider

Members:
Nola Bayes, MBA, Wentworth-Douglass Hospital, Dover, NH
Heidi L. Betti, CST, CRCST, Mercy Medical Center, Springfield, MA
Ann Burke, TSO, Inc.
Bradley J. Catalone, PhD, Olympus America Inc.
Nancy Chobin, RN, CSPDM, Saint Barnabas Health Care System, West Orange, NJ
Linda Clement, CRCST, STERIS Corporation
Ramona Conner, RN, MSN, CNOR, Association of periOperative Registered Nurses
Stephen A. Conviser, Honeywell International
Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology
Betty D. Edge, RN, CNOR, North Shore Long Island Jewish Health System, Manhasset, NY
Zory R. Glaser, PhD, MPH, CSPDM, Johns Hopkins University, School of Public Health
Joel R. Gorski, PhD, NAMSA
Charles Oren Hancock, RAC, H&W Technology LLC
Nyla "Skee" Japp, RN, PhD, JMS, Phoenix, AZ
Teckia A. Maresca, LPN, CSPDM, St. Clare’s Health System, Denville, NJ
Ted May, Andersen Products Inc.
Thomas K. Moore, Pittsford, NY
Bob L. Osburn, U.S. Department of Veterans Affairs
Leslie A. Phillips, Bausch & Lomb Inc.
Jason Pope, Nelson Laboratories Inc.
Anthony Powell, Getinge USA
Wendy Royalty-Hann, Raven Biological Laboratories
Phil M. Schneider, 3M Health Care
Richard William Schuler, MBA, CST, FCS, Clarion Health, Indianapolis, IN
Janet K. Schultz, RN, MSN, Parker, CO
Linda A. Stone, RN, CNOR, Sibley Memorial Hospital, Washington, DC
Gayle Stratheam, Ethox International Inc.
Betsy Strickland, Christie's St. Joseph Medical Center, Houston, TX
Donna Swenson, CSPDM, West Suburban Hospital Medical Center, Oak Park, IL
Raymond Taurasi, Healthmark Industries
Steven E. Turlit, U.S. Food and Drug Administration
P. Richard Warburton, ChemDAQ Inc.
Nora E. Wikander, RN, CSPDM, St. Joseph's Wayne Hospital, Wayne, NJ

Alternates: Renee Camp, Ethox International Inc.
Mike Carragher, Getinge USA
Mark Chiffon, STERIS Corporation
Christophe A. Demitrius, U.S. Food and Drug Administration
Dan Dwyer, Raven Biological Laboratories
Natalie Lind, International Association of Healthcare Central Service Materiel Management
John Lindley, Andersen Products Inc.
Emily Mitzel, MS, Nelson Laboratories Inc.
Laurie Nawrocki, NAMSA
Charles D. Paige, U.S. Department of Veterans Affairs
Michael J. Schoene, Bausch & Lomb Inc.
Jonathan A. Wilder, PhD, H&W Technology LLC
Martha Young, 3M Health Care

NOTE—Participation by federal agency representatives in the development of this recommended practice does not constitute endorsement by the federal government or any of its agencies.
AAMI Sterilization Standards Committee

Cochairs: Victoria M. Hitchins, PhD
William E. Young

Members: Trabue D. Bryans, WuXi AppTec Inc.
Peter Burke, STERIS Corporation
Nancy Chobin, RN, CSPDM, Saint Barnabas Health Care System, West Orange, NJ
Charles Cogdill, Boston Scientific Corporation
Ramona Conner, RN, MSN, CNOR, Association of periOperative Registered Nurses
Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology
Kimbell Darnell, CR Bard
Lisa Foster, Sterigenics International
Joel R. Gorski, PhD, NAMSA
Deborah A. Havlik, Hospira Worldwide Inc.
Victoria M. Hitchins, PhD, U.S. Food and Drug Administration
Danny Hutson, Cardinal Health
Lois Atkinson Jones, MS, Cary, IN
Susan G. Klaek, ACE, International Association of Healthcare Central Service Materiel Management
Byron J. Lambert, PhD, Abbott Laboratories
Colleen Patricia Landers, RN, Canadian Standards Association
David Liu, Johnson & Johnson
Lisa N. Macdonald, Becton, Dickinson and Company
Jeff Martin, Alcon Laboratories Inc.
Patrick J. McCormick, PhD, Bausch & Lomb Inc.
Nancy J. Rakiewicz, Ethox International Inc.
Phil M. Schneider, 3M Health Care
Michael H. Scholla, MS, PhD, DuPont Nonwovens
Mark Seybold, Baxter Healthcare Corporation
Andrew Sharavara, Propper Manufacturing Co. Inc.
Mark N. Smith, Getinge USA
William N. Thompson, Covidien
James L. Whitby, MA, MB, FRCP, London, Ontario
Martell Kress Winters, SM, Nelson Laboratories Inc.
Lloyd Brown, Covidien

Alternates: David Dion, Cardinal Health
Thomas J. Frazar, Johnson & Johnson
Kathy Hoffman, Sterigenics International
Jim Kaiser, Bausch & Lomb Inc.
Joseph J. Lasich, Alcon Laboratories Inc.
Chiu Lin, PhD, U.S. Food and Drug Administration
Natalie Lind, International Association of Healthcare Central Service Materiel Management
Ralph Makinen, Boston Scientific Corporation
Mary S. Mayo, CR Bard
David Ford McGoldrick, Abbott Laboratories
Jerry R. Nelson, MS, PhD, Nelson Laboratories Inc.
Karen Polkinghome, DuPont Nonwovens
Janet M. Prust, 3M Health Care
Michael Sadowski, Baxter Healthcare Corporation
John R. Scoville, Jr., STERIS Corporation
Ralph Stick, WuXi AppTec Inc.
Jason Voisinet, Ethox International Inc.
Valerie Welter, Hospira Worldwide Inc.
William E. Young, Boston Scientific Corporation

NOTE—Participation by federal agency representatives in the development of this recommended practice does not constitute endorsement by the federal government or any of its agencies.
Acknowledgments

The AAMI Ethylene Oxide Sterilization Hospital Practices Working Group gratefully acknowledges the important contributions of Anne Cofiell, CRCST, FAC, International Association of Healthcare Central Service Materiel Management. Ms. Cofiell participated in numerous AAMI standards development activities over many years and most recently served as cochair of the Ethylene Oxide Sterilization Hospital Practices Working Group. The expertise and hard work that she contributed to the development of AAMI standards and recommended practices pertaining to the sterilization of medical devices are very much appreciated.
Foreword

This recommended practice was developed by the Ethylene Oxide Sterilization Hospital Practices Working Group of the AAMI Sterilization Standards Committee. The guidelines in this document are intended to help assure achievement of sterilization with hospital ethylene oxide (EO) sterilizers, maintenance of sterility of processed items until the point of use, and reduction of occupational exposure to EO.

ANSI/AAMI ST41:1999 combined two previously published recommended practices: the second edition of Good hospital practice: Ethylene oxide sterilization and sterility assurance (ANSI/AAMI ST41:1992) and the third edition of Good hospital practice: Ethylene oxide gas—Ventilation recommendations and safe use (ANSI/AAMI ST43:1993). Combining these two recommended practices placed all of AAMI’s recommendations concerning EO sterilization in health care facilities into a single document for ease of reference. The provisions of the previously published recommended practices were updated to reflect new regulatory and technological developments, especially with respect to EO monitoring, EO emission control, and new diluents that had come into use as substitutes for chlorofluorocarbon-12 (CFC-12). The current edition of this document, ANSI/AAMI ST41:2008, provides revised recommendations concerning qualification testing of EO sterilizers and incorporates extensive information from ANSI/AAMI ST79 (Comprehensive guide to steam sterilization and sterility assurance in health care facilities) regarding attire, handling and transport of contaminated items, cleaning and decontamination processes, user verification of cleaning processes, selection and use of chemical disinfectants, thermal disinfection, and devices returned to the manufacturer.

In today’s cost-conscious health care environment, it is important not to lose sight of the need for economy. However, cost-effectiveness in EO sterilization processing is not just a matter of the purchase price of instrumentation or the direct cost of quality assurance procedures. The effectiveness of risk management, the level of performance and longevity of equipment, and other factors should be integrated into the overall system for optimum assurance of safety, effectiveness, and true economy.

This recommended practice reflects the conscientious efforts of health care professionals, in cooperation with manufacturers of EO sterilization and aeration equipment, to develop recommendations for optimum performance levels in the processing of reusable medical devices to be sterilized by EO and for optimum control of occupational exposure to EO in health care facilities. It is not intended that these recommendations be construed as universally applicable in all circumstances. It is also recognized that in many cases these recommendations might not be immediately achievable. Therefore, the document should be used to guide personnel toward desirable performance objectives, and all of its provisions should be considered and applied in the light of professional judgment and experience.

As used within the context of this document, “shall” indicates requirements strictly to be followed in order to conform to the recommended practice; “should” indicates that, among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited; “may” is used to indicate that a course of action is permissible within the limits of the recommended practice; and “can” is used as a statement of possibility and capability. “Must” is used to describe only “unavoidable” situations, including those mandated by government regulation.

Departmental managers should review the provisions of this recommended practice and adapt the provisions to the needs of their particular institutions. Written policies and procedures should be developed and implemented in consultation with appropriate hospital committees (e.g., safety, hazardous materials, risk management, infection control).

The concepts incorporated in this recommended practice should be considered flexible and dynamic. The recommendations set forth in this document are reviewed and updated periodically to assimilate progressive technological developments. AAMI policies and procedures require that AAMI standards and recommended practices be reviewed and, if necessary, revised at least once every 5 years.

This standard is expected for continuous maintenance procedures. If the standard is continuously maintained, AAMI will create a notification registry that will send e-mail announcements when any maintenance activity occurs to the recommended practice. To register, visit www.aami.org/standards/st41.registry.html. Suggestions for improving this recommended practice are invited. Comments or proposals for revisions to any part of the standard may be submitted to AAMI at any time. Written comments should be sent to AAMI, Attn: Standards Department, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633. Comments may also be e-mailed to standards@aami.org.

NOTE—This foreword does not contain provisions of the AAMI recommended practice, Ethylene oxide sterilization in health care facilities: Safety and effectiveness (ANSI/AAMI ST41:2008), but it does provide important information about the development and intended use of the document.
Ethylene oxide sterilization in health care facilities: Safety and effectiveness

Introduction: Need for the recommended practice

Ethylene oxide (EO) gas and its mixtures are effective sterilants that are primarily used for heat- and moisture-sensitive medical devices that cannot be steam sterilized. Despite the many recent advances in medical and surgical care, health care–associated (nosocomial) infections continue to be a significant drain on human and economic resources, producing human suffering and higher health care costs. One way to prevent these health care–associated infections in health care facilities is effectively reprocessing and sterilizing medical devices by EO.

The delivery of sterile products for use in patient care depends not only on the efficacy of the sterilization process itself but also on efficient facility design, good infection prevention and control practices, effective quality control, and other aspects of device processing before, during, and after sterilization.

Ethylene oxide gas must be used with care because of its toxicity and (when used in its pure form) its flammability and explosiveness. For these reasons, EO should be used to sterilize only those items that cannot undergo the steam sterilization process. The currently available sterilant mixtures of EO and hydrochlorofluorocarbons (HCFCs) and of EO and carbon dioxide (CO₂) were developed to reduce the potential flammability of EO and to replace previously used mixtures of EO and chlorofluorocarbon-12 (CFC-12).

The Occupational Safety and Health Administration (OSHA) has established a permissible exposure limit (PEL) of 1 part per million (ppm) airborne EO in the workplace, expressed as a time-weighted average (TWA) for an 8-hour work shift in a 40-hour work week. OSHA also has defined an “action level” of 0.5 ppm, expressed as an 8-hour TWA, and an excursion limit (EL) of 5 ppm, expressed as a 15-minute TWA. (See Annex A.) As a result of the Clean Air Act (CAA) and Clean Water Act (CWA), which are enforced by regulations of the Environmental Protection Agency (EPA), some states have implemented emission control requirements that affect health care facilities. In addition, the EPA recently promulgated national emission standards for hospital EO sterilizers (40 CFR 63). Health care facilities must comply with the OSHA standard and with applicable EPA regulations.

It is essential that health care personnel keep current with applicable federal, state, and local regulations and with voluntary guidelines, because additional requirements might be adopted as a result of ongoing research on the health effects of EO or as a result of experience with the OSHA standard and the emission control regulations. Information on current OSHA regulations (see Annex A) can be obtained from either state OSHA offices or the federal office (Occupational Safety and Health Administration, Office of Information Services, 200 Constitution Avenue, NW, Washington, DC 20210; http://www.osha.gov). Information on current EPA regulations can be obtained from either EPA offices or the federal office (Environmental Protection Agency, Office of Pollution Prevention and Toxics Substances [TAIS #7408], 1200 Pennsylvania Avenue, NW, Washington, DC 20480; http://www.epa.gov). Information on the current Food and Drug Administration (FDA) regulatory status of sterilants and sterilizing agents can be obtained by contacting the Chief of the Infection Control Devices Branch (HFZ-480), Office of Device Evaluation, Center for Devices and Radiological Health (CDRH), Food and Drug Administration, 9200 Corporate Boulevard, Rockville, MD 20850, 240-276-3747), or by checking http://www.fda.gov/cdrh.

Health care facilities differ in their physical design and equipment and in the training level of personnel with regard to sterilization processing. This recommended practice sets forth guidelines for facility design and work practices to assist health care personnel in developing procedures to achieve and maintain the sterility assurance level (SAL) of devices sterilized by EO. This recommended practice should be considered for EO ventilation. Written policies and procedures should be developed and implemented in consultation with appropriate hospital committees (e.g., safety, hazardous materials, risk management, and infection prevention and control).