AMERICAN NATIONAL STANDARD
AFBMA STANDARD

LOAD RATING S AND FATIGUE LIFE
FOR ROLLER BEARINGS

Sponsor
The Anti-Friction Bearing Manufacturers Association, Inc.

Approved July 17, 1990
American National Standards Institute, Inc.
American National Standard

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerned effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of approval. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

The Anti-Friction Bearing Manufacturers Association, Inc.
1101 Connecticut Ave. N.W., Suite 700
Washington, D.C. 20036

Copyright 1990 by The Anti-Friction Bearing Manufacturers Association, Inc.
FOREWORD

(This Foreword is not a part of American National Standard, Load Ratings and Fatigue Life for Roller Bearings.)

This revision of ANSI/ABMA Standard 11 has as its principal feature: The utilization of the factor f_m which depends on the geometry of the bearing components, the accuracy to which the various components are made and contemporary, normally used material and its manufacturing quality.

This standard is in close conformity with ISO 76-1987 (Rolling bearings Static load ratings) and with ISO DIS 281-1989 (Rolling bearings Dynamic load ratings and rating life). Any significant differences, where they occur, are indicated in this standard.

The principal difference between this standard and ISO DIS 281 is the use of the f_m factor which combined the f_1 and b_m factors used in ISO 281. Dynamic load ratings calculated for the same bearing should have the same value, however, when following either this or the ISO Standard unless noted otherwise in this standard.

The life adjustment factor for special bearing properties, a_2, intended for use with capacities calculated in accordance with previous revisions of this Standard may not be valid for use with the current capacities. The present f_m values incorporate material and processing improvements which were previously adjusted by means of the a_2 factor.

Copies of ISO Standards concerning Rolling Contact Bearings (Ball and Roller Bearings) are available from the American National Standards Institute.

Suggestions for the improvement of this standard gained from its use will be welcomed. Such suggestions should be sent to the American National Standards Institute, Inc., 1430 Broadway, New York, N.Y., 10018.

The officers of Accredited Standards Committee B3 operating under American National Standards Institute Procedures and the organizations represented at the time this standard was submitted are as follows:

S. R. Ahlman, Chairman G. T. Satterfield, Secretary

Anti-Friction Bearing Manufacturers Association
Hydraulic Institute
National Machine Tool Builders Association
Society of Tribologists and Lubrication Engineers
U.S. Department of the Navy
U.S. Department of Defense, DISC
AFBMA Standards
for
Ball and Roller Bearings
and Balls

An AFBMA Standard is intended as a guide to aid the manufacturer, the consumer and the general public. The existence of an AFBMA Standard does not in any respect preclude anyone, whether he has approved the Standard or not from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AFBMA Standards are subject to revision or withdrawal at any time and users who refer to an AFBMA Standard should satisfy themselves that they have the latest information from the Association.
Load Ratings and Fatigue Life
For Ball Bearings

SECTION
1. Introduction
 1.1 Purpose of Standard
 1.2 Life Criterion
 1.3 Static Load Criterion

2. Symbols

3. Definitions
 3.1 Life
 3.2 Reliability
 3.3 Static Load
 3.4 Pitch Diameter of a Roller Set, D_{ow}
 3.5 Basic Rating Life, L_{10}
 3.6 Adjusted Rating Life, L_{na}
 3.7 Basic Dynamic Radial Load Rating, C_r
 3.8 Basic Static Radial Load Rating, C_{sr}
 3.9 Basic Dynamic Axial Load Rating, C_a
 3.10 Basic Static Axial Load Rating, C_{sa}
 3.11 Dynamic Equivalent Radial Load, P_r
 3.12 Static Equivalent Radial Load, P_{sr}
 3.13 Dynamic Equivalent Axial Load, P_a
 3.14 Static Equivalent Axial Load, P_{sa}
 3.15 Roller Diameter, D_{we}
 3.16 Roller Length, L_{we}
 3.17 Nominal Contact Angle, \alpha
 3.18 Line Contact
 3.19 Point Contact
 3.20 Optimized Contact
 3.21 Conventional Operating Conditions

4. Scope
 4.1 Bearing Types
 4.1.1 General
 4.1.2 Basic Types
 4.1.3 Double Row
 4.2 Limitations
 4.2.1 Truncated Contact Area
 4.2.2 Materials
 4.2.3 Bearing Types
 4.2.4 Lubrication
 4.2.5 Ring Support and Alignment
 4.2.6 Internal Clearance
 4.2.7 High Speed Effects
 4.2.8 Stress Concentrations
 4.2.9 Tolerances
 4.2.10 Plastic Deformation in the Contact Area
 4.3 Operating Parameters
5. Radial Roller Bearings ... 6
 5.1 Basic Dynamic Radial Load Rating 6
 5.1.1 Bearing Combinations 6
 5.2 Dynamic Equivalent Radial Load 6
 5.2.1 Bearing Combinations 9
 5.3 Basic Rating Life .. 9
 5.4 Basic Static Radial Load Rating 9
 5.4.1 Bearing Combinations 9
 5.5 Static Equivalent Radial Load 10
 5.5.1 Bearing Combinations 10

6. Thrust Roller Bearings ... 10
 6.1 Basic Dynamic Axial Load Rating 10
 6.1.1 Single Row Bearings 10
 6.1.2 Bearings with Two or More Rows of Rollers 10
 6.1.3 Bearing Dynamic Equivalent Axial Load 11
 6.2 Dynamic Equivalent Axial Load 11
 6.3 Basic Rating Life .. 12
 6.4 Basic Static Axial Load Rating 14
 6.5 Static Equivalent Axial Load 14

7. Adjusted Rating Life ... 14
 7.1 General .. 14
 7.2 Limitations ... 14
 7.3 Life Adjustment Factor for Reliability a1 14
 7.4 Life Adjustment Factor for Special Bearing Properties, a2 . 15
 7.5 Life Adjustment Factor for Operating Conditions, a3 15

LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Values of (f_{cm})</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Values of (X) and (Y)</td>
<td>9</td>
</tr>
<tr>
<td>3.</td>
<td>Values of (X_0) and (Y_0)</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>Values of (f_{cm}) for cylindrical roller bearings, tapered roller bearings and needle roller bearings with machine rings</td>
<td>11</td>
</tr>
<tr>
<td>5.</td>
<td>Values of (f_{cr}) for drawn cup needle roller bearings</td>
<td>12</td>
</tr>
<tr>
<td>6.</td>
<td>Values of (f_{cm}) for spherical roller bearings</td>
<td>13</td>
</tr>
<tr>
<td>7.</td>
<td>Values of (X) and (Y)</td>
<td>13</td>
</tr>
<tr>
<td>8.</td>
<td>Life Adjustment Factors for Reliability</td>
<td>15</td>
</tr>
</tbody>
</table>
Load Ratings and Fatigue Life for Roller Bearings

1. INTRODUCTION

1.1 Purpose of Standard

Roller bearing performance is a function of many variables. These include the bearing design, the characteristics of the material from which the bearings are made, the way in which they are manufactured, as well as many variables associated with their application. The only sure way to establish the satisfactory operation of a bearing selected for a specific application is by actual performance in the application. As this is often impractical, another basis is required to estimate the suitability of a particular bearing for a given application. This is the purpose of this standard.

This standard specifies the method of calculating the basic dynamic load rating of rolling bearings within the size ranges shown in the relevant ANSI/AFBMA standards, manufactured from contemporary, commonly used, good quality hardened steel in accordance with good manufacturing practice and basically of conventional design as regards the shape of rolling contact surfaces.

1.2 Life Criterion

Even if roller bearings are properly mounted, adequately lubricated, protected from foreign matter, and are not subjected to extreme operating conditions, they can ultimately fatigue. Under ideal conditions, the repeated stresses developed in the contact areas between the roller and the raceways eventually can result in fatigue of the material which manifests itself as spalling of the load carrying surfaces. In most applications the fatigue life is the maximum useful life of a bearing. This fatigue is the criterion of life used as the basis for the first part of this standard.

Fatigue life calculated in accordance with this standard does not represent the maximum that can be attained by applying all known technology to roller bearing design and application. Neither does it represent the minimum that should be expected of a bearing made by a producer lacking skill and experience in the design and manufacture of roller bearings, even though the bearing meets the geometric parameters given below. The calculated fatigue life represents the performance normally expected from high quality bearings made by reputable manufacturers. Manufacturers can supply longer lived bearings by the application of advanced materials and manufacturing processes. The present standard has evolved as a means for bearing users to specify a reasonable standard of performance for the bearing they wish to purchase.

1.3 Static Load Criterion

A static load is a load acting on a non-rotating bearing. Permanent deformations appear in rollers and raceways under a