ANSI/ADA Specification No. 1027
Approved by ANSI: November 2, 2010

American National Standard/ American Dental Association **Specification No. 1027**

Implementation Guide for ADA Specification No. 1000 - Standard Clinical Data Architecture

ADA American
Dental
Association®

ANSI/ADA Specification No. 1027 - 2010

AMERICAN NATIONAL STANDARD/AMERICAN DENTAL ASSOCIATION SPECIFICATION NO. 1027 FOR THE IMPLEMENTATION GUIDE FOR ANSI/ADA SPECIFICATION NO. 1000: STANDARD CLINICAL DATA ARCHITECTURE

The Council on Dental Practice of the American Dental Association has approved American Dental Association Specification No. 1027 for the Implementation Guide for ANSI/ADA Specification No. 1000: Standard Clinical Data Architecture. Working Groups of the ADA Standards Committee on Dental Informatics (SCDI) formulate this and other specifications and technical reports for the application of information technology and other electronic technologies to dentistry's clinical and administrative operations. The ADA SCDI has representation from appropriate interests in the United States in the standardization of information technology and other electronic technologies used in dental practice. The specification was forwarded to the American National Standards Institute with a recommendation that the specification be approved as an American National Standard. Approval of ADA Specification No. 1027 as an American National Standard was granted by the American National Standards Institute on November 2, 2010.

The ADA Standards Committee on Dental Informatics thanks the members of Working Group 11.1 on Standard Clinical Data Architecture and the organizations with which they were affiliated at the time the specification was developed:

Mark Diehl (chairman), Mark Diehl Consulting, Rensselaer, NY;

Robert Ahlstrom, private practice, Reno, NV;

Kenneth W. Aschheim, Mount Sinai Medical Center, New York, NY;

Arden Forrey, University of Washington, Seattle, WA;

Gary Guest, University of Texas Health Science Center, San Antonio, TX;

Antonio F. Magni, topsOrtho, Inc., Marietta, GA;

Jim McLees, National Association of Dental Laboratories, Kent, WA;

Jean Narcisi, American Dental Association, Chicago, IL;

Robert Owens, American Dental Association, Chicago, IL;

Titus Schleyer, S3 Web Technologies, Wexford, PA;

Robert Shaw, private practice, Spokane, WA;

Scott Trapp, U.S. Public Health Service, Ogema, MN; and

Gregory G. Zeller, University of Maryland, Baltimore.

In addition, many members of other SCDI working groups and other standards developing organizations, including HL7 and ASTM; and experts from the private sector and federal government, contributed comments and suggestions.

2

AMERICAN NATIONAL STANDARD/AMERICAN DENTAL ASSOCIATION SPECIFICATION NO. 1027 FOR THE IMPLEMENTATION GUIDE FOR ANSI/ADA SPECIFICATION NO. 1000: STANDARD CLINICAL DATA ARCHITECTURE

FOREWORD

(This Foreword does not form a part of ANSI/ADA Specification No. 1027 for the Implementation Guide for ANSI/ADA Specification No. 1000: Standard Clinical Data Architecture).

In 1998 the ADA began publishing the Proposed ANSI 1000 Specification as a draft standard for public review and comment. The draft standard was published by subject areas corresponding to the major processes identified in the Concept Model. Public review included document distribution and symposium review at numerous professional meetings. Following all-parties review and balloting according to ANSI and ADA standards development rules, the Specification was approved as an American National Standard in February, 2001. With this action, this specification became the first model-based, comprehensive, data-level standard for electronic health information in the United States.

The specification's implementation guide was approved for publication as ADA Technical Report No. 1027 in August, 2003. This document represents the first revision to that technical report. With approval by ANSI, this document is now an American National Standard.

In 1992, there was interest in the standardization of clinical information systems related to electronic technology in the dental environment. After evaluating current informatics activities, a Task Group of the Accredited Standards Committee MD156 (ASC MD156) was created by the ADA to initiate the development of technical reports, guidelines, and standards on electronic technologies used in dental practice. In 1999, the ADA established the ADA Standards Committee on Dental Informatics (SCDI). The ADA SCDI is currently the group that reviews and approves proposed American National standards (ANSI approved) and technical reports developed by the standards committee's working groups. The ADA became an ANSI accredited standards organization in 2000.

The scope of the ADA SCDI is:

"To promote patient care and oral health through the application of information technology to dentistry's clinical and administrative operations; to develop standards, specifications, technical reports, and guidelines for: components of a computerized dental clinical workstation; electronic technologies used in dental practice; and interoperability standards for different software and hardware products which provide a seamless information exchange throughout all facets of healthcare."

AMERICAN NATIONAL STANDARD/AMERICAN DENTAL ASSOCIATION SPECIFICATION NO. 1027 FOR THE IMPLEMENTATION GUIDE FOR ANSI/ADA SPECIFICATION NO. 1000: STANDARD CLINICAL DATA ARCHITECTURE

TABLE OF CONTENTS

1. Introduction	6
Background	6
Purpose	6
Scope	6
Referenced Documents	7
Terms and Definitions	7
Acronyms and Descriptions	8
This Implementation Guide Includes	8
2. Implementation Approach	8
Foundation Concepts	8
Voluntary Consensus Standards	9
Implementation	
Development Methodology	10
Database Forward Engineering	10
Layered and Tiered Architecture	11
The Physical Data Model	14
Surrogate Keys	14
Denormalization	14
Indexing	14
Partitioning	15
Transformational Data Model	15
Relational and Object Oriented Persistent Data	15
3. Implementation Examples	16
Individual name	16
Step 1. User Requirements	16
Step 2. Business Rules	17
Step 3. Specification Subject Areas	18
Step 4. Convert to a Physical Form	18
Step 5. Transform the Physical Model	19
Instantiate the Physical Data Model	
Comment	22
A Master Provider List	23
Step 1. User Requirements	23
Step 2. Business Rules	24
Step 3. Specification Subject Areas	24
Step 4. Convert to a Physical Form	25
Step 5. Transform the Physical Model	25
Comment	28
Clinical Examination Data	29
Step 1. User Requirements Narrative	29
Step 2. Business Rules	29

Step 3. Specification Subject Areas	30
Step 4. Convert to a Physical Form	30
Step 5. Transform the Physical Model	31
Clinical Intelligence	32
Step 1. User Requirements Narrative	32
Step 2. Business Rules	33
Step 3. Specification Subject Areas	33
Step 4. Convert to a Physical Form	34
Step 5. Transform the Physical Model	35
Comment	36
Illustrating Provider Procedures	36
Step 1. User Requirements Narrative	36
Step 2. Business Rules	36
Step 3. Specification Subject Areas	37
Step 4. Convert to a Physical Form	38
Step 5. Transform the Physical Model	39
Conclusion	40
4. Design Issues	41
Constructs and Patterns	41
Optimizing Database Performance	41
Subtype Elimination	41
Entity Simplification	42
Order of Columns	42
Additional Columns	42
Surrogate Key	42
Object Identifier	43
Indexes	43
Alternate Keys	44
Inversion Entries	44
Partitions	44
Managing Look-up Tables	44
Reference Entities	44
Reference Codes	45
Differing Formats and Incomplete Date & Time Data	47
Missing Values	47
Approach 1 – Appending Missing Data Columns	
Approach 2 – Including Missing Data Standard Values	48
Including Comments	49
Editing the DDL	52
5. Privacy, Security and Confidentiality	53
Security Provisions	53
HIPAA compliance	53
Privacy and Confidentiality	53
Access Control	
Audit Trails	54
Trusted Information	55

Source Data Validation	55
Data Integrity	56
6. Interacting with the Environment	57
User Interface	57
Messaging	58
DICOM Messaging	59
HL7 Messages	59
ANSI X12 Messages	60
NCPDP Messages	61
Clinical Laboratory and Other Messages	61
Clinical Documents	61
7. Appendix A. DDL Creation Using the CASE Tool	63
The Logical Data Model	63
The Physical Data Model	64
The DBMS Model	
Data Definition Language Script	65
8. Appendix B. Reference Tables	74
Reference Data Sources	74
Reference Data Stewardship	
Typical Reference Data Sets	75
Clinical Code Sets	75
Values and Numerical Notation	76
Other Reference Tables and Code Sets	77
Individual and Population Characterization	77
Administrative Codes	78
EDI Code Sets	78
Organizational Identifier	78
Location references	
Geospatial Data	80
Industrial and Occupational Codes	80
Healthcare Materiel Codes	80
Populating Reference Tables	81

R

AMERICAN NATIONAL STANDARD/AMERICAN DENTAL ASSOCIATION SPECIFICATION NO. 1027 FOR THE IMPLEMENTATION GUIDE FOR ANSI/ADA SPECIFICATION NO. 1000: STANDARD CLINICAL DATA ARCHITECTURE

1. INTRODUCTION

Background

The origin of the ANSI/ADA Specification 1000 for the Structure and Content of a Computer based Patient Record is the ADA House of Delegates Resolution 18H-1992 (Trans 1992:597) to facilitate development of the computer-based dental patient record. The ADA Council on Dental Practice established a Computer-based Oral Health Record (COHR) workgroup to implement this resolution. An important result of this work effort was the designation of the American Dental Association as the steward of data content and policy in Dentistry by ADA Board Resolutions B-118-1995 to B-121-1995.

In February, 1996, the CDP COHR Workgroup completed its work with publication of the Computer-based Oral Health Record Concept Model. The COHR Concept Model presented a view of the clinical process and basic data needed to support these processes. This concept model forms the foundation for this standard.

Also in 1996 the ADA House of Delegates approved Resolution 92H-1996 advocating seamless availability of patient health data across the healthcare professions, specialties, and care delivery environments. This resolution addressed the interoperability of health data for patient benefit, considering the health of the entire patient and noting that patient well-being and optimum outcomes often need provider access to patient health information sources beyond the traditional boundaries that artificially compartmentalize care delivery.

In 1998 the ADA began publishing the Proposed ANSI 1000 Specification as a draft standard for public review and comment. The draft standard was published by subject areas corresponding to the major processes identified in the Concept Model. Public review included document distribution and symposium review at numerous professional meetings. Following all-parties review and balloting according to ANSI and ADA standards development rules, the Specification was adopted as an American National Standard in February, 2001. With this action, this specification became the first model-based, comprehensive, data-level standard for electronic health information in the United States.

The specification's implementation guide was approved for publication as ADA Technical Report No. 1027 in August, 2003. This document represents the first revision to that technical repo. With approval by ANSI, this document is now an American National Standard.

PURPOSE

The purpose of this document is to provide implementation guidance to system planners, solution and data architects, and database developers. This document describes engineering approaches and presents examples of how this specification may be used at the data layer of system designs and in data subsystems for new development, legacy system migration, and data system retrofit.

SCOPE

The ANSI 1000 Implementation Guide provides technical guidance for architects and developers to use in preparing a clinical data design that conforms to the Specification 1000. With this implementation guide vendors, developers and other users can efficiently and economically build clinical databases and data systems from the ANSI/ADA 1000 Specification. This