Distribution Pipe:
Repair and Replacement Decision Manual

AGA
American Gas Association
NOTICE AND COPYRIGHT

The American Gas Association's (AGA) Operating Section provides a forum for industry experts to bring collective knowledge together to improve the state of the art in the areas of operating, engineering and technological aspects of producing, gathering, transporting, storing, distributing, measuring and utilizing natural gas.

Through its publications, of which this is one, the AGA provides for the exchange of information within the gas industry and scientific, trade and governmental organizations. Each publication is prepared or sponsored by an AGA Operating Section technical committee. While AGA may administer the process, neither the AGA nor the technical committee independently tests, evaluates, or verifies the accuracy of any information or the soundness of any judgments contained therein.

The AGA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on AGA publications. The information contained therein is provided on an “as is” basis and the AGA makes no representations or warranties including any express or implied warranty of merchantability or fitness for a particular purpose.

In issuing and making this document available, the AGA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the AGA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The AGA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the AGA list, certify, test, or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance is solely the responsibility of the certifier or maker of the statement.

The AGA does not take any position with respect to the validity of any patent rights asserted in connection with any items which are mentioned in or are the subject of AGA publications, and the AGA disclaims liability for the infringement of any patent resulting from the use of or reliance on its publications. Users of these publications are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Users of this publication should consult applicable federal, state, and local laws and regulations. The AGA does not, through its publications intend to urge action that is not in compliance with applicable laws, and its publications may not be construed as doing so.

Any changes in this document that are believed appropriate should be communicated to AGA by completing the last page of this report titled, “Form for Suggestions to Change Distribution Pipe: Repair and Replacement Decision Manual” and sending it to: Operations & Engineering Services Group, American Gas Association, 400 North Capitol Street, NW, 4th Floor, Washington, DC 20001, U.S.A.

Copyrights © 2006, American Gas Association, All Rights Reserved.
Contents

INTRODUCTION

SECTION 1 - BUDGET IMPLICATIONS

The System Management Approach to Repair/Replace Decisions .. 6
 1988 SIG BOYSEN, JR. Public Service Electric & Gas Company

The Use of Decision Analysis and Risk Management to Optimize Expenditures 19
 1996 DANIEL R. BAKER Consumers Power Company

Risk Analysis in Distribution Design .. 25
 1990 JAMES W. PETERS The Brooklyn Union Gas Company

Gas Distribution Facilities Decision Making, Discussing An Asset Management Approach 30
 2005 GLYN HAZELDEN GTI

A Risk Management Tool For Establishing Budget Priorities .. 36
 1997 JOHN F. KIEFNER, Ph.D Kiefner and Associates, Inc.

A Decision-Analytic Approach to the Replacement of Gas Mains and Services 45
 2006 DAN O’NEILL O’Neill Management Consulting, LLC

SECTION 2 - PRIORITIZATION METHODS

Task Group Report on Criteria for Replacement Versus Repair .. 50
 1969 AGA DISTRIBUTION DESIGN and DEVELOPMENT COMMITTEE

Replacement Criteria for Cast-Iron Mains .. 56
 1988 C. W. CROOKS, JR. Baltimore Gas & Electric Company

Replacement Criteria for Steel Mains .. 60
 1988 C. W. CROOKS, JR. Baltimore Gas & Electric

Prioritizing and Making Replacement/Renewal Decisions on Gas Mains .. 64
 1988 MARK B. NELSON Northern States Power Company

Leakage Control Through a Selective Gas Service Replacement Program .. 73
 1981 ANTHONY J. MORRISON Northeast Utilities Service Company

The Pipeline Inspection and Maintenance Optimization System ... 78
 1994 JOHN E. CONROY Woodward-Clyde Consultants

 RAM B. KULKARNI Woodward-Clyde Consultants

 THOMAS M. STEINBAUER Transmission Operations Research

Cast Iron Main Break Predictive Models .. 89
 1993 BERNADETTTE S. LOCHBAUM Public Service Electric and Gas Company

A Bayesian Diagnostic Model for Pipeline Leak Prediction .. 103
 1987 JUDY C. CHUANG, RAM B. KULKARNI and DINESH SHAH Woodward-Clyde Consultants

Optimal Replacement Decisions for Cast Iron Gas Piping Systems ... 113
 1988 RAM B. KULKARNI Woodward Clyde Consultants

 KAMAL GOLABI Optima, Inc

 GEORGE DUGOVIC Rochester Gas and Electric Co

 KENNETH B. BURNHAM Gas Research Institute

Comparison of CIMOS Results with Practice in a Large Distribution Company 126
 1989 RAM B. KULKARNI Woodward-Clyde Consultants

CIMOS Revisited ... 129
 1995 DR. RENNY S. NORMAN Gas Research Institute

Formal Decision Analysis Process Guides Maintenance Budgeting .. 133
 1994 DAN O’NEILL O’Neill Management Consulting, LLC

 K. L. ELENBAAS Consumers Power Co.

* From the 1990 Manual XL8920
SECTION 3 - REPAIR/REPLACEMENT ECONOMIC ANALYSIS
*Fundamentals of Repair/Replacement Analysis Under Group Depreciation .. 139
 1989 GERALD G. WILSON Institute of Gas Technology
The EPOCH Concept: The Positive Impact Economics Can Have on the Integrity of a Distribution System ... 153
 1993 G. SHERI CONLEY Southern California Gas Company
*Repair Versus Replace Analysis-Guidelines for Existing Gas Mains .. 166
 1987 THOMAS H. PADLEY, P.E. Iowa-Illinois Gas and Electric Company
Evaluating the Cost Effectiveness of Steel vs. Polyethylene Large Diameter Pipe 188
 1992 SIDNEY J. DAVIS Carnegie Natural Gas Company

SECTION 4 - APPLICATIONS OF REPAIR/REPLACEMENT DECISION MAKING
*Bare Steel Mains, Life and Economics ... 195
 1971 J. T. WELLENER Baltimore Gas and Electric Company
*Predicting Leaks and Optimizing Maintenance of Cast Iron Mains ... 203
 1983 JAMES W. PETERS Brooklyn Union Gas
New Hampshire’s Bare Steel Replacement Program: An Example of Utility and Regulatory Cooperation ... 210
 2001 PAUL LaSHOTO Consultant
Managing Cast Iron Systems .. 213
 1994 PETER COLLETTE Public Service Electric and Gas Company
Managing a Cast Iron System .. 217
 1991 ROBERT J. MILLER The Brooklyn Union Gas Company

SECTION 5 - REHABILITATION
Creating A Pipeline Rehabilitation Plan ... 225
 1996 WILLIAM F. MARSHALL, P.E.
Rehabilitation Needs Assessment Procedures for Transmission Pipelines 236
 1993 HERBERT L. FLUHARTY, P.E. Mears/CPG, Inc.
 JOHN W. FLUHARTY, II Mears/CPG, Inc.
A Systematic Approach to Corrosion Problems of an Old Gas Distribution System 246
 2006 MICHAEL P. DOLAN Consolidated Edison Company of New York (CECONY)

SECTION 6 - COMMERCIAL SOFTWARE AND REFERENCE RESOURCES
What to look for in Main Replacement and Risk-Assessment Software 253
 2003 GLYN HAZELDEN, P.E. Hazelden Group
Other Resources .. 261

INDEX OF AUTHORS .. 262

INDEX OF SUBJECTS .. 264

FORM FOR SUGGESTION TO CHANGE .. 274

* From the 1990 Manual XL8920
DISTRIBUTION PIPE: REPAIR AND REPLACEMENT DECISION MANUAL

Introduction
Introduction

This technical report, which is a collection of industry papers and reference resources, provides an overview of the procedures and practices utilized to maximize the benefits received from gas distribution piping repair and replacement. Originally published in 1990 as “Attention Prioritizing and Pipe Replacement/Renewal Decisions,” AGA Catalog No. XL8920, 13 papers have been retained from this older manual and are identified in the Contents with an * and a footnote. The report was updated in 2006 by adding 18 additional papers for a new total of 31, and includes coverage of cast iron, steel, and, to a lesser extent, plastic gas distribution pipe infrastructure.

The basic issues associated with gas distribution repair and replacement expenditures are:

- Establishing annual maintenance and replacement budgets
- Establishing priorities for the sections of main that comprise a distribution system
- Evaluating the cost-effectiveness of whether a troublesome section should be repaired or replaced

These issues were covered in the original technical report and have been expanded on and updated in this current report. In addition, the 2006 report includes industry papers that address repair/replacement decision-making and pipeline rehabilitation, as well as commercial software and reference resources.

The papers and reference resources have been arranged into six sections. A synopsis of each section follows:

Section 1 - Budget Implications

The six papers in this section discuss various decision analysis techniques and programs used to optimize capital expenditures. The first paper, “The System Management Approach to Repair/Replace Decisions,” includes an approach to assessing the implications of various levels of replacement and repair of worn pipe in an existing system and relates the annual levels of repair and replacement to system performance. “Discussing An Asset Management Approach” describes how the Asset Management concept will facilitate risk management by improving system reliability while optimizing the allocation of financial resources. Other papers in this section address how to effectively allocate capital resources through defined cost-benefit analysis and risk management prioritization, such as “Gas Distribution Facilities Decision Making.”

Section 2- Prioritization Methods

Section 2 has twelve papers, including a 1969 AGA task group report, “Criteria for Replacement Versus Repair.” This report presents a concept for establishing a method, rather than presenting a detailed method of solution. The report includes: “Step I. Method to Establish Priority” and “Step II. Repair or Replace,” plus some example tables and forms that can be used. The next several papers, involve the use of a point system approach to establishing attention priorities for main sections. Point systems rank piping segments into groups, where application of risk reduction techniques will produce the greatest increase in system safety, the ultimate goal of the distribution integrity process. Certain papers, such as “Replacement Criteria For Cast Iron Mains,” address cast iron replacement while others, such as
“Replacement Criteria For Steel Mains,” address steel mains. For transmission pipe, one paper, "The Pipeline Inspection and Maintenance Optimization System," focuses on a tool to develop the optimum inspection and maintenance strategy. Also discussed in this section is CIMOS (Cast Iron Main Optimization System), a statistical approach based on a Bayesian diagnostic model and developed through research sponsored by the Gas Research Institute (GRI) beginning in 1984. A supporting paper in this section, “A Bayesian Diagnostic Model for Pipeline Leak Prediction,” describes the logic of a statistical procedure for predicting the probability of leaks for a distribution system or replacing a specified pipe segment. Another paper dealing with CIMOS, “CIMOS Revisited,” summarizes the use of the program by four gas companies.

Section 3 - Repair Replacement Economic Analysis

This section consists of four papers, with the first presenting a general procedure for analysis of repair/replacement economics. It includes discussion of the considerations that impact significantly on repair/replacement decision-making that are not easily reduced to monetary terms. Another paper employs the EPOCH (“Efficient Pipeline Operation in a Competitive Habitat”) concept, which considers past leak repairs as a general indicator of the mains condition, as well as the economic feasibility and risk associated with the decision to repair the main in lieu of replacing it. The third paper in this section, “Repair Versus Replace Analysis-Guidelines for Existing Gas Mains,” describes a repair/replacement decision process, which considers both economic and irreducible factors. The section concludes with a paper evaluating the cost-effectiveness of steel versus polyethylene large diameter pipe.

Section 4 - Applications of Repair/Replacement Decision-making

Section 4 consists of five papers, with the first, “Bare Steel Mains, Life, and Economics,” discussing an approach to repair/replacement economics for bare steel mains based on a breakeven graph. Another paper, “Predicting Leaks and Optimizing Maintenance of Cast Iron Mains,” describes a regression analysis model to predict the annual number of leaks for a cast iron pipe distribution system. It is also used to assess the effectiveness of a joint clamping program. The remaining papers in this section deal with managing cast-iron systems and bare steel replacement programs.

Section 5 - Rehabilitation

This section consists of three papers dealing with the rehabilitation of pipe and stresses how operators can make the most effective use of the rehabilitation dollar. These papers address the increasing need for today's pipeline operators to institute a program for the rehabilitation of their pipeline systems.

Section 6 - Commercial Software and Reference Resources

This final section provides a reference to some commercially available software designed and developed to support the decision process for main and pipeline repair/replacement expenditures. In each instance, the Web address of the software vendor current as of the time of publication is provided. In addition, this section lists valuable references that may be consulted to provide more information and guidance concerning the procedures and practices utilized to maximize the benefits received from piping repair and replacement expenditures.
The papers selected for inclusion in this technical report were chosen because they were either representative of the current state of the art or because they contained an approach or concept likely to be of use to others. Certain information in some papers is dated, but these papers are still thought to be of general value, which should be apparent in the context of the more recent papers. The combined information in them should give someone initiating a repair/replacement program a running start or facilitate revision and enhancement of an existing program.

No paper or procedures presented is necessarily the most effective for all distribution systems or more effective for a specific system than others not included. The operators of a system must apply considerable judgment based on knowledge of their system in selecting the prioritizing system and repair/replacement decision procedures to use.

Many of the papers used in this updated manual were given at an AGA Operations Conference and are identified with a reference such as (92-DT-7) or (95-OP-090). The first number is the year of the Operations Conference and the second number is a designation given to that specific paper. The reader should note that the information given in these older papers does not necessarily reflect processes, procedures and equipment now used by the companies. Also, please note that some of the older charts and tables are not of the quality we would prefer. Some have been retyped. However, it was not practical to re-type some of the more complicated charts and tables, and re-scanning was not helpful.

Larry T. Ingels, PE
Technical Editor for AGA
Section 1
Budget Implications