AGMA Information Sheet

Splines – Design and Application
CAUTION NOTICE: AGMA technical publications are subject to constant improvement, revision or withdrawal as dictated by experience. Any person who refers to any AGMA Technical Publication should be sure that the publication is the latest available from the Association on the subject matter.

[Tables or other self-supporting sections may be referenced. Citations should read: See AGMA 945-A18, Splines – Design and Application, published by the American Gear Manufacturers Association, 1001 N. Fairfax Street, Suite 500, Alexandria, Virginia 22314, http://www.agma.org.]

Approved November 15, 2018

ABSTRACT

This information sheet covers parallel straight sided and involute splines. It provides information relating to geometry, fit types, materials, manufacturing, rating, inspection, lubrication, and failure of splined elements.

Published by

American Gear Manufacturers Association
1001 N. Fairfax Street, Suite 500, Alexandria, Virginia 22314

Copyright © 2018 by American Gear Manufacturers Association
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America

Contents

Foreword ... v

1 Scope ... 1

2 Normative references ... 3

3 Symbols and nomenclature ... 3
 3.1 Terms ... 6

4 Geometry .. 9
 4.1 Basic elements of a spline ... 9
 4.2 Involute splines .. 11
 4.3 Parallel straight sided splines ... 13
 4.4 Tooth size .. 14
 4.5 Effective pressure angle for parallel straight sided splines 15
 4.6 Spline end geometry ... 16
 4.7 Shaper cut or blind broaching clearance grooves 22
 4.8 Modifications ... 22
 4.9 Root configuration ... 25

5 Spline fits ... 26
 5.1 Loose fit splines .. 27
 5.2 Transition and interference fits ... 28
 5.3 Parallel straight sided spline fits ... 29
 5.4 Effective vs. actual tooth thickness and space width 29

6 Drawing ... 29
 6.1 Involute tooth form .. 29
 6.2 Parallel straight sided splines ... 31

7 Inspection/measurement ... 34
 7.1 Functional quality for assembly ... 34
 7.2 Two categories of measurement methods 34
 7.3 Functional measurement .. 35
 7.4 Dimension over/under pins or balls ... 35
 7.5 Concentricity or runout method .. 36
 7.6 Effective tooth thickness/space width ... 37
 7.7 The "effective fit" concept ... 37
 7.8 Analyzing elemental errors ... 39
 7.9 Go, no-go plugs & rings ... 39
 7.10 Variable spline gaging ... 41
 7.11 Analytical-elemental measurement .. 42
 7.12 Inspection of large splines ... 44

8 Materials and manufacturing ... 45
 8.1 Spline manufacturing processes – generating action 46
 8.2 Non-generating spline manufacturing processes 47
 8.3 Heat treatment prior to spline forming ... 48
 8.4 Heat treating after spline forming .. 48
 8.5 Other secondary processing ... 49
9 Spline lubrication ... 49
 9.1 Purpose of spline lubrication ... 49
 9.2 Types of spline lubrication .. 50
 9.3 Selection criteria for lubrication type .. 51
 9.4 Lubrication techniques ... 52
10 Rating and troubleshooting ... 54
 10.1 Characteristics affecting spline stress ... 55
 10.2 Stress and life factors .. 56
 10.3 Involute spline stress formulas ... 59
 10.4 Surface distress ... 68
 10.5 Tooth breakage ... 69
 10.6 Shaft / hub breakage: .. 69
 10.7 Difficult to assemble ... 71

Annexes
Annex A (informative) Bibliography ... 72

Tables
Table 1 – Document scope ... 1
Table 2 – Symbols and terms .. 4
Table 3 – Basic spline pitch ... 14
Table 4 – Effective pressure angle of external parallel straight sided splines per ISO 14 . 16
Table 5 – Spline rack typical values ... 18
Table 6 – Spherical rolled spline falloff ... 22
Table 7 – Involute and parallel straight sided spline fits .. 27
Table 8 – Typical manufacturing processes and applicable materials 47
Table 9 – Recommended spline application factors, K_a .. 56
Table 10 – Face load distribution factor, K_{fm} .. 57
Table 11 – Fatigue life factor, L_f for splines ... 58
Table 12 – Life factor, L_w, for splines .. 59
Table 13 – Dudley allowable compressive stresses with corresponding stress ratios 60
Table 14 – Tabular values for crown contact stress factors 62
Table 15 – Dudley allowable shear stresses with corresponding stress ratios 64

Figures
Figure 1 – Basic elements of involute splines .. 9
Figure 2 – Basic elements of parallel straight sided splines 10
Figure 3 – Involute and parallel straight sided splines .. 10
Figure 4 – External involute spline ... 11
Figure 5 – Internal involute spline .. 11
Figure 6 – Working depth .. 12
Figure 7 – External parallel straight sided spline .. 13
Figure 8 – External parallel straight sided spline .. 13
Figure 9 – Parallel straight sided spline effective pressure angle 15
Figure 10 – Tool relief ... 17
Figure 11 – Lead in geometry ... 17
Figure 12 – Rolled spline root runout and tool geometry 18
Figure 13 – Cross section of the spline rack tool 18
Figure 14 – Rolled splines vs. cut splines ... 19
Figure 15 – Spline hobbing, generated ... 19
Figure 16 – Lead-in chamfer ... 20
Figure 17 – Spline flank chamfer .. 20
Figure 18 – Rolled major diameter falloff .. 21
Figure 19 – Spherical rolled spline falloff .. 22
Figure 20 – Tapered tooth ... 23
Figure 21 – Tip chamfering ... 23
Figure 22 – Block tooth .. 25
Figure 23 – Typical internal root and fit configurations 26
Figure 24 – Spline potential pilot features 26
Figure 25 – Low detail specification .. 30
Figure 26 – High detail specification ... 31
Figure 27 – Internal parallel straight sided spline specification 32
Figure 28 – External parallel straight sided tooth specification 33
Figure 29 – Quality features .. 34
Figure 30 – Measurement over/under balls/pins for even number of teeth 36
Figure 31 – Measurement over/under balls/pins for odd number of teeth 36
Figure 32 – Concentricity plug & ring gages 36
Figure 33 – Effective vs. actual tooth thickness 37
Figure 34 – Breakdown of deviation allowance and machining allowances 38
Figure 35 – Go spline plug gage .. 40
Figure 36 – Go, no-go spline ring gages ... 40
Figure 37 – Tapered master plug ... 41
Figure 38 – Hand held variable actual tooth/space spline gage 42
Figure 39 – Variable effective tooth/space spline gages 42
Figure 40 – Pistol grip style variable spline gages 42
Figure 41 – Analytical-elemental measurement chart 43
Figure 42 – Large go, no-go spline plug gages for large part 44
Figure 43 – Dimension between balls inspection of large parts 44
Figure 44 – Ball span mics ... 45
Figure 45 – Fully submerged .. 54
Figure 46 – Dudley wear life factor .. 67
Figure 47 – Dudley fatigue life factors .. 67
Figure 48 – Ductile torsional failure (plane of shaft cross section) 70
Figure 49 – Brittle torsional failure (helicoid) 70
Foreword

[The foreword, footnotes and annexes, if any, in this document are provided for informational purposes only and are not to be construed as a part of AGMA Information Sheet 945-A18, Splines – Design and Application.

Several documents exist relating to various aspects of spline design and manufacture. For example, spline geometry is well covered in other standards and rather than repeating those standards, this document makes reference to each one. Even the term spline can refer to a multitude of part shapes. This document is an attempt to augment other spline standards and consolidate information on spline types, geometry, assembly, inspection, materials, manufacturing processes, lubrication, rating, and failure modes.

Although involute splines of 30° pressure angle are very popular, this information sheet also covers involute splines of 37.5° and 45° pressure angle, parallel straight sided splines and modifications to spline geometry such as lead modification, missing tooth, and end geometry from the manufacturing process.

This committee first met in November 2011 to develop this information sheet. The committee consisting of automotive, industrial, aerospace component and system manufacturers and consultants were responsible for first developing this document.

The first draft of AGMA 945-A18 was created in December 2012. It was approved by the membership in February 2018.

Suggestions for improvement of this standard will be welcome. They may be submitted to tech@agma.org.
PERSONNEL of the AGMA Spline Committee

Chairperson: Stephen McKenny .. General Motors
Vice Chairperson: Todd Praneis ... Cotta Transmission Company, LLC

ACTIVE MEMBERS

Wayne Godlevske ... Rexnord Gear Group
Kyle Grefen ... Cincinnati Gearing Systems Inc.
Deanna Majchszak ... Dana Inc.
Paul Nel ... Dana Inc.
Rick Platt ... Allison Transmission, Inc.
Kurt Riggenbach .. Caterpillar Inc.
James Sherred ... Ameridrives Couplings
Matthew Slayter .. UTC Aerospace Systems
Brian Slone .. Slone Gear International
American Gear Manufacturers Association –

Splines – Design and Application

1 Scope

The scope of this information sheet includes involute splines (some of which are governed by ISO 4156 and DIN 5480), plus variants such as modifications to helix, lead crown, form diameters, root geometry, tooth thickness, and fits and straight sided splines with parallel teeth in the external spline (some of which are governed by ISO 14). It also includes longitudinal effects such as the washout of the minor diameter in splines that are formed or cut into a shaft and hoop strength effects of hollow splined sections. A limited range of materials is included: hard steel, soft steel, powdered metal steel (PM), and cast iron. Manufacturing processes discussed include: rolling, hobbing, shaping, milling, broaching, grinding, net formed PM, and cold forming. Rating for compressive, shear, bending, and hoop stresses are covered, as are tolerances, lubrication, and failure modes. Both elemental and attribute inspection of splines are included. It also describes drawing requirements, and a troubleshooting guide. Table 1 provides a summary of the scope.

Table 1 – Document scope

<table>
<thead>
<tr>
<th>Category</th>
<th>In Scope</th>
<th>Not in scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape:</td>
<td>a. Cylindrical</td>
<td>a. Non-parallel straight sided</td>
</tr>
<tr>
<td></td>
<td>b. Involute 30°, 37.5°, 45° pressure angle</td>
<td>b. Castle</td>
</tr>
<tr>
<td></td>
<td>c. Straight sided with parallel teeth in external spline</td>
<td>c. Other involute pressure angle</td>
</tr>
<tr>
<td>Modifications:</td>
<td>a. Crowned</td>
<td>d. Serration</td>
</tr>
<tr>
<td></td>
<td>b. Tapered</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Reduced form clearance</td>
<td>e. Face including Curvic</td>
</tr>
<tr>
<td></td>
<td>d. Modified tooth thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Tip chamfer or internal corner clearance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Splines with some teeth intentionally missing</td>
<td></td>
</tr>
<tr>
<td>Tooth Size:</td>
<td>a. Involute: 0.5 to 10 mm metric module</td>
<td>a. Finer than 0.5 module</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Coarser than 10 module</td>
</tr>
<tr>
<td>Tooth count:</td>
<td>a. Involute: Equal to or more than 6 teeth</td>
<td>a. Involute: Less than 6 teeth</td>
</tr>
<tr>
<td></td>
<td>b. Parallel straight sided: 4, 6, 8, 10, 16 teeth</td>
<td>b. Parallel straight sided: other tooth counts</td>
</tr>
<tr>
<td>Location:</td>
<td>a. Internal</td>
<td>a. Face</td>
</tr>
<tr>
<td></td>
<td>b. External</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Metric involute: ISO 4156, DIN 5480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Parallel straight sided: ISO 14</td>
<td></td>
</tr>
<tr>
<td>Lead:</td>
<td>a. Straight, or spur</td>
<td>a. Spur or helical; continuation of gear tooth</td>
</tr>
<tr>
<td></td>
<td>b. Slight helix on shaft for interference fit</td>
<td>b. Helix splines for locking > 1 degree</td>
</tr>
<tr>
<td>Root geometry:</td>
<td>a. Flat root</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Full fillet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Undercuts in internal spline major diameter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Net formed root shape</td>
<td></td>
</tr>
</tbody>
</table>