This is a preview of "ANSI/AGMA 6002-B93 (...". Click here to purchase the full version from the ANSI store.



American Gear Manufacturers Association

**Technical Resources** 

Revision of AGMA 170.01 Reaffirmed May 2008

# American National Standard

Design Guide for Vehicle Spur and Helical Gears

ANSI/AGMA 6002-B93

# Design Guide for Vehicle Spur and Helical Gears ANSI/AGMA 6002–B93

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation of this standard should be addressed to the American Gear Manufacturers Association.

**CAUTION NOTICE:** AGMA Standards are subject to constant improvement, revision, or withdrawal as dictated by experience. Any person who refers to any AGMA Technical Publication should be sure that the publication is the latest available from the Association on the subject matter.

[Tables or other self-supporting sections may be quoted or extracted in their entirety. Credit lines should read: Extracted from ANSI/AGMA 6002–B93, *Design Guide for Vehicle Spur and Helical Gears*, with the permission of the publisher, the American Gear Manufacturers Association, 1500 King Street, Suite 201, Alexandria, Virginia 22314].

## Approved February 5, 1993 American National Standards Institute, Inc.

### ABSTRACT

This standard provides the engineer, who is familiar with gear designing, a guide to sound design approaches for vehicle gear applications. It is the updated and expansion of AGMA 170.01–1976 *Design Guide for Vehicle Spur and Helical Gears*.

Through this standard, the engineer is guided to selecting design considerations paramount to the parallel axis gear sets required in vehicle drive lines. These include tooth and blank proportions, lubrication, profile and lead modification requirements, and gear tooth tolerances. Properties of the commonly used steels and processes for their heat treatment are outlined, as well as details for calculating design limits for bending and contact stresses.

An annex is provided detailing sample problems showing design procedures and calculations.

For full effectiveness, this guide should be used in conjunction with other applicable AGMA Standards.

Copyright ©, 1993 by American Gear Manufacturers Association

#### Published by

# American Gear Manufacturers Association 1500 King Street, Suite 201, Alexandria, Virginia, 22314

ISBN: 1-555898-616-2

# Contents

|        | Page                                                                                |
|--------|-------------------------------------------------------------------------------------|
| Forewo | rdv                                                                                 |
| 1      | Scope                                                                               |
| 1.1    | Use                                                                                 |
| 1.2    | Applications                                                                        |
| 1.3    | References                                                                          |
| 1.4    | Definitions and symbols                                                             |
| 2      | Design considerations                                                               |
| 2.1    | Size and weight limitations                                                         |
| 2.2    | Tooth proportions                                                                   |
| 2.3    | Typical design values                                                               |
| 2.4    | Long and short addendums                                                            |
| 2.5    | Non-standard center distances                                                       |
| 2.6    | Sliding velocities                                                                  |
| 2.7    | Rim proportion                                                                      |
| 2.8    | Heat treat variation                                                                |
| 2.9    | Involute profile modifications                                                      |
| 2.10   | Lead crowning (tooth alignment)                                                     |
| 2.11   | Axial lead (tooth alignment) modifications                                          |
| 2.12   | Lubrication                                                                         |
| 2.13   | Gear tolerances                                                                     |
| 2.14   | Noise considerations                                                                |
| 3      | Materials and heat treatment                                                        |
| 3.1    | Material selection                                                                  |
| 3.2    | Case carburized steels                                                              |
| 3.3    | Induction and flame hardening                                                       |
| 3.4    | Guide for minimum case depth                                                        |
| 3.5    | Other hardening methods                                                             |
| 3.6    | Shot peening                                                                        |
| 4      | Determination of load capacity                                                      |
| 4.1    | Capacity to resist bending fatigue                                                  |
| 4.2    | Capacity to resist pitting 21                                                       |
| 4.3    | Capacity to resist scuffing 24                                                      |
| 5      | Variable loading                                                                    |
| 5.1    | Introduction                                                                        |
| 5.2    | Miner's rule                                                                        |
| 5.3    | Procedure                                                                           |
| 5.4    | Overload factors                                                                    |
| 5.5    | Failure mode 35                                                                     |
| Tables |                                                                                     |
| 1      | Symbols and terms                                                                   |
| 2      | Total profile modification in vehicle gearing to compensate for bending under load  |
| 3      | Carburizing steels commonly used for vehicle spur and helical gears                 |
| 4      | Major metallurgical factors affecting carburized and hardened gears                 |
| 5      | Flame and induction hardening materials commonly used for spur and helical gears 14 |
| 6      | Major metallurgical factors affecting flame or induction hardened gears             |
| 7      | Major metallurgical factors affecting through hardened gears                        |

# Contents (cont)

.

٩

|        |                                                                                              | Page |
|--------|----------------------------------------------------------------------------------------------|------|
| 8      | Major metallurgical factors affecting nitrided gears                                         | 19   |
| 9      | Typical standard addendum spur gear Hertz factor, $C_K$ , and Bending stress factor, $C_i$ , |      |
|        | normal pressure angle 20 degrees                                                             | 25   |
| 10     | Typical 1.25 pinion addendum spur gear Hertz factor, $C_K$ , and bending stress              |      |
|        | factor, Ct, normal pressure angle 20 degrees                                                 | 25   |
| 11     | Typical 1.25 pinion addendum spur gear Hertz factor, $C_K$ , and bending stress              |      |
|        | factor, Ct, normal pressure angle 20 degrees                                                 | 26   |
| 12     | Typical standard addendum spur gear Hertz factor, $C_K$ , and bending stress                 |      |
|        | factor, Ct, normal pressure angle 25 degrees                                                 | 26   |
| 13     | Typical 1.25 pinion addendum spur gear Hertz factor, $C_K$ , and bending stress              |      |
|        | factor, Ct, normal pressure angle 25 degrees                                                 | 27   |
| 14     | Typical standard addendum helical gear Hertz factor, $C_K$ ,                                 |      |
|        | and bending stress factor, C <sub>t</sub> , normal pressure angle 20 degrees                 | 27   |
| 15     | Typical standard addendum helical gear Hertz factor, $C_K$ ,                                 |      |
|        | and bending stress factor, Ct, normal pressure angle 20 degrees                              | 28   |
| 16     | Typical standard addendum helical gear Hertz factor, $C_K$ ,                                 |      |
|        | and bending stress factor, Ct, normal pressure angle 25 degrees                              | 28   |
| 17     | Typical standard addendum helical gear Hertz factor, $C_K$ ,                                 |      |
|        | and bending stress factor, $C_t$ , normal pressure angle 25 degrees                          | 29   |
| 18     | Typical 1.25 pinion addendum helical gear Hertz factor, $C_K$ , and bending                  | ~~   |
|        | stress factor, Ct, normal pressure angle 20 degrees                                          | 29   |
| 19     | Typical 1.25 pinion addendum helical gear Hertz factor, $C_K$ , and bending                  |      |
|        | stress factor, Ct, normal pressure angle 20 degrees                                          | 30   |
| 20     | Typical 1.25 pinion addendum helical gear Hertz factor, $C_K$ , and bending                  |      |
| ~      | stress factor, <i>C</i> , normal pressure angle 25 degrees                                   | 30   |
| 21     | Typical 1.25 pinion addendum helical gear Hertz factor, $C_K$ , and bending                  | 01   |
| 00     | stress factor, <i>C</i> , normal pressure angle 25 degrees                                   |      |
| 22     | Typical derating factor for vehicle spur and helical gears                                   |      |
| 23     | Allowable bending stress number, $S_{at}$ , for steel gears                                  |      |
| 24     | Allowable contact stress number, s <sub>ac</sub> , for steel gears                           | - 33 |
| Figure |                                                                                              |      |
| 1      | Minimum addendum to eliminate undercut on 1 $P_d(25.4 m_n)$ vehicle full depth spur gears.   | 4    |
| 2      | Lead tolerances (tooth alignment) for crowned tooth                                          | 6    |
| 3      | Typical tooth profile tolerance chart                                                        |      |
| 4      | Case hardened tooth cross section                                                            | 12   |
| 5      | Depth of effective case at mid-tooth height for spur and helical gears, for carburized and   |      |
|        | Type A induction                                                                             |      |
| 6      | Variations in hardening patterns obtainable on gear teeth with flame or induction hardening  | -    |
| 7      | Core hardness coefficient for nitrided gears, Uc                                             | 17   |
| 8      | Minimum total case depth for nitrided gears, h <sub>c</sub>                                  |      |
| 9      | Bending stress design limits, carburize and harden, induction Type A (contour) hardened      |      |
| 10     | Bending stress design limits, induction and flame hardened                                   |      |
| 11     | Contact stress design limits for steel gears                                                 |      |
| 12     | Duty cycle curve                                                                             | 34   |
| Annex  |                                                                                              |      |
| Α      | Sample problems                                                                              | . 36 |
|        |                                                                                              |      |

# FOREWORD

[The foreword, footnotes, and annexes, if any, are provided for informational purposes only, and should not be construed as part of American Gear Manufacturers Association Standard 6002–B93, *Design Guide for Vehicle Spur and Helical Gears*.]

This standard was prepared by the AGMA Vehicle Gearing Committee. It is provided as a guide to sound approaches for designing gears used in vehicle drive lines. This guide is intended for use by design engineers capable of selecting reasonable values for rating factors, material grades, heat treatment, and gear manufacturing capabilities. It updates, expands, and replaces AGMA 170.01–1976, *Design Guide for Vehicle Spur and Helical Gears*. The committee intends to continue updating this standard to incorporate the latest data and technologies as they are developed.

This guide establishes a gear set design by following a sequential approach using:

- a) Design considerations;
- b) Material and heat treatment;
- c) Load capacity determination;
- d) Variable loading.

The decision to produce a vehicle gearing design guide was made by the Vehicle Gearing Committee on May 4, 1971. The first draft of AGMA 170.01 was dated May 1972. Standard AGMA 170.01 was approved by the Committee in July 1974, by the Board of Directors and Technical Division Executive Committee in July 1975 and by the AGMA membership as of February 1976.

The Vehicle Gearing Committee was reactivated in October 1987 to develop an updated vehicle gearing design guide.

ANSI/AGMA 6002–B93 was approved by the Committee in February 1990, by the Board of Directors and Technical Division Executive Committee in September 1992, and by the AGMA membership in November 1992.

Suggestions for the improvement of this standard will be welcome. They should be sent to the American Gear Manufacturers Association, 1500 King Street, Suite 201, Alexandria, Virginia, 22314.

# **PERSONNEL** of the AGMA Committee for Vehicle Gearing

| Chairman: M. R. Chaplin   | Contour Hardening |
|---------------------------|-------------------|
| Vice Chairman: T. McGinty | McGinty Gear      |

#### **ACTIVE MEMBERS**

| E. R. Braun Eaton Corporation        |         |
|--------------------------------------|---------|
| D. Brownlie Dana Corporation         |         |
| D. Crouch Metal Improvement          |         |
| C. Dieterle C-Dot Engineering        |         |
| K. Ho G.M. Gear Center               |         |
| F. T. Huscher Rockwell Intl.         |         |
| W. Karrasch Outboard Marine Corp (re | etired) |
| J. M. Lange American Pfauter         |         |
| W. McVea Clark–Hurth                 |         |
|                                      |         |

#### **ASSOCIATE MEMBERS**

J. Bentley ..... Peerless/Winsmith G. L. Bowers .... General Motors/ATD M. Browne ..... Reishauer Limited C. Buscema ..... Sier-Bath J. Cadisch ..... Reishauer J. Clatworthy .... Gleason J. F. Craig ..... Cummins Engine F. W. Cumbow ... M&M Precision D. E. DeRocker . . Sier-Bath D. W. Dudley .... Honorary Member J. Eaton ..... Liebherr Machine Tool J. Eckerslev ..... Metal Improvement P. A. Eicher ..... Reishauer J. A. Ferrett ..... National Broach P. Fox ..... Clark Components Intl. F. M. Hager ..... Cummins Engine J. S. Hamilton .... Ohio Richmond J. Hamilton ..... Cloyes Gear E. Hawkinson .... Metal Finishing B. Hicks ..... Eaton Corporation D. L. Hillman ..... Komatsu Dresser D. E. Imwalle .... Cincinnati Gear I. Kalns ..... Eaton Corporation A. Karvelis ..... Borg-Warner Research Ctr F. Krist ..... Mercury Marine

| A. Mankowski | Columbia Gear                 |
|--------------|-------------------------------|
| R. Miller    | Fairfield                     |
| J. A. Nelson | General Electric              |
| 0. Olson     | Eaton Corporation             |
| L. J. Smith  | Invincible Gear               |
| D. Thurman   | Caterpillar                   |
| J. Vaughn j  | Cloyes Gear Company           |
| L. Wang      | Getrag Gears of North America |
| E. Wudi      | Dana Corporation              |

1

| O. A. LaBath    |                       |
|-----------------|-----------------------|
| B. W. McCoy     | Marathon LeTourneau   |
| R. H. Moderow   | ITW/Illitron          |
| J. L. O'Berry   | ITW/Illinois Tools    |
| G. E. Olson     | Cleveland Gear        |
| P. B. Patel     | Cummins Engine        |
| R. L. Piatt     | General Motors/ATD    |
| P. C. Renzo     | Sier-Bath             |
| N. Revenaugh    | Dana Corporation      |
| T. Riley        | NWL Control System    |
| L. Schnipke     | SPECO Corporation     |
| E. R. Sewall    | Sewall Gear           |
| I. Shearing     | Liebherr Machine Tool |
| E. E. Shipley   | Mechanical Technology |
| R. E. Smith     | Consultant            |
| E. L. Storm     | Eaton Corporation     |
| M. Sullivan     | Dana Corporation      |
| D. A. Sylvester | Foote-Jones           |
| P. Vogel        | Reishauer             |
| D. Vukovich     | Eaton Corporation     |
| T. P. Wagner    | General Motors/ATD    |
| D. Webb         | Fairfield             |
| R. A. Weinreber | Gleason               |
| G. I. Wyss      | Reishauer             |
|                 |                       |

#### AMERICAN NATIONAL STANDARD

# American National Standard –

# Design Guide for Vehicle Spur and Helical gears

#### 1 Scope

#### 1.1 Use

This standard provides information on the design of spur and helical vehicle power transmission gears. Included are considerations for design, material and heat treatment, determination of load capacity, mounting features, and typical design problems.

In determining load capacity, the knowledge and judgment required to evaluate the various rating factors come from years of accumulated experience in designing, manufacturing, and operating gear units. This standard is intended for use by the experienced gear designer, capable of selecting reasonable values for the rating factors. It is not intended for use by the engineering public at large.

#### **1.2 Applications**

Vehicle Gearing is defined as: "Drive line components of self-propelled, wheeled or non-wheeled vehicles; for transportation, recreational or industrial use. Propulsion of these vehicles should be a primary function of its power source, and its mobility not confined to the constraints of a closely defined area."

#### **1.3 References**

The following standards contain provisions which, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

AGMA 246.02A, Recommended Procedure for Carburized Aerospace Gearing. AGMA 908–B89, Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical, and Herringbone Gear Teeth.

ANSI/AGMA 2000–A88, Gear Classification and Inspection Handbook.

ANSI/AGMA 2001–B88, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.

ANSI/AGMA 2007–B92, Surface Temper Etch Inspection After Grinding.

ANSI/AGMA 6033–A88, Standard for Marine Propulsion Gear Units, Part 1, Materials.

ANSI/SAE AMS 2301G, Magnetic Particle Inspection, Aircraft–Quality Steel Cleanliness.

ASTM A388–80, Recommended Practice for Ultrasonic Examination of Heavy Steel Forgings.

ASTM A534–87, Standard Specification for Carburizing Steels for Anti–Friction Bearings.

ASTM A609–83, Specification for Steel Castings, Carbon and Low Alloy, Ultrasonic Examination Thereof.

ASTM E428–71, Recommended Practice for Fabrication and Control of Steel Reference Blocks Used in Ultrasonic Inspection.

ASTM E709–80, Magnetic Particle Examination.

1.4 Definitions and symbols

1.4.1 Definitions

The terms used, wherever applicable, conform to the following standards:

ANSI/AGMA 1012–F90, Gear Nomenclature, Definitions of Terms with Symbols

AGMA 904-B89, Metric Usage

ANSI Y10.3–1968, Letter Symbols for Quantities Used in Mechanics of Solids

#### 1.4.2 Symbols

The symbols used in the pitting resistance and bending strength formulas are shown in table 1.

NOTE – The symbols and definitions used in this standard may differ from other AGMA Standards. The user should not assume that familiar symbols can be used without a careful study of these definitions.

## ANSI/AGMA 6002-B93