American National Standard

Standard for Industrial Enclosed Gear Drives
American National Standard

Standard for Industrial Enclosed Gear Drives
ANSI/AGMA 6013-B16
[Revision of ANSI/AGMA 6013-A06]

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing or using products, processes or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute.
Requests for interpretation of this standard should be addressed to the American Gear Manufacturers Association.

CAUTION NOTICE: AGMA technical publications are subject to constant improvement, revision or withdrawal as dictated by experience. Any person who refers to any AGMA Technical Publication should be sure that the publication is the latest available from the Association on the subject matter.

Approved April 5, 2016

ABSTRACT
This standard includes design, rating, lubrication, testing, and selection information for enclosed gear drives, including foot mounted, shaft mounted, screw conveyor drives, and gearmotors. These drives may include spur, helical, herringbone, double helical, or bevel gearing in single or multistage arrangements as either parallel, concentric, or right angle configurations.

Published by
American Gear Manufacturers Association
1001 N. Fairfax Street, Suite 500, Alexandria, Virginia 22314

Copyright © 2016 by American Gear Manufacturers Association
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America
ISBN: 978-1-55589-049-0
Contents

Foreword .. vi

1 Scope ... 1
 1.1 Limitations .. 1
 1.2 Exceptions ... 1

2 Normative references .. 1

3 Symbols and terms ... 2
 3.1 Symbols .. 2
 3.2 Terms ... 3
 3.2.1 Gearmotors ... 3
 3.2.2 Shaft mounted drives .. 3
 3.2.3 Foot mounted drives ... 3
 3.2.4 Flange or face mounted drives ... 3
 3.2.5 PAO synthetic lubricant .. 3
 3.2.6 PAG synthetic lubricant ... 3

4 Application and design considerations .. 3
 4.1 Momentary load .. 3
 4.2 Rating factors .. 4
 4.3 System analysis .. 4
 4.4 Considerations for cold temperature operation .. 4
 4.5 Inertia effects .. 4
 4.5.1 Large motor inertia – small driven inertia .. 4
 4.5.2 Small motor inertia – large driven inertia ... 4
 4.5.3 Other inertia considerations ... 4
 4.6 Additional application and design considerations .. 5

5 Unit rating ... 5
 5.1 External loading ... 5
 5.2 Efficiency ... 5
 5.2.1 Electric motor .. 6
 5.3 Application power .. 6
 5.4 Momentary overloads ... 6

6 Gear rating criteria .. 6
 6.1 Pitting resistance power rating, P_{ac} .. 7
 6.1.1 Pitting resistance for spur and helical gearing ... 7
 6.1.2 Pitting resistance for bevel gears .. 8
 6.2 Bending strength power rating, P_{at} .. 8
 6.2.1 Bending strength for spur and helical gearing ... 8
 6.2.2 Bending strength for bevel gears .. 9
 6.3 Allowable stress numbers for pitting resistance and bending strength 9
 6.4 Load spectrum analysis ... 9

7 Thermal power rating ... 9

8 Component design .. 10
 8.1 Housing .. 10
 8.2 Threaded fasteners ... 10
 8.3 Bearings ... 10
 8.4 Shafting ... 10
 8.5 Balancing ... 10
 8.6 Keys .. 10

©AGMA 2016 – All rights reserved
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.1</td>
<td>External keyways</td>
<td>10</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Interference fit of hubs and shafts</td>
<td>10</td>
</tr>
<tr>
<td>8.7</td>
<td>Torque arms</td>
<td>11</td>
</tr>
<tr>
<td>8.8</td>
<td>Backstops</td>
<td>12</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Backstop types</td>
<td>12</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Selection and application</td>
<td>12</td>
</tr>
<tr>
<td>8.8.3</td>
<td>Installation</td>
<td>12</td>
</tr>
<tr>
<td>8.8.4</td>
<td>Lubrication</td>
<td>13</td>
</tr>
<tr>
<td>8.9</td>
<td>Couplings</td>
<td>13</td>
</tr>
<tr>
<td>8.10</td>
<td>Shrink discs</td>
<td>13</td>
</tr>
<tr>
<td>8.11</td>
<td>Shaft bushings</td>
<td>13</td>
</tr>
<tr>
<td>8.11.1</td>
<td>Bushing types</td>
<td>13</td>
</tr>
<tr>
<td>8.11.2</td>
<td>Design considerations</td>
<td>14</td>
</tr>
<tr>
<td>8.11.3</td>
<td>Installation criteria</td>
<td>15</td>
</tr>
<tr>
<td>8.12</td>
<td>Electric motors</td>
<td>15</td>
</tr>
<tr>
<td>8.12.1</td>
<td>Motor types</td>
<td>15</td>
</tr>
<tr>
<td>8.12.2</td>
<td>Selection criteria</td>
<td>16</td>
</tr>
<tr>
<td>8.13</td>
<td>Other components</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Service factors and application classification</td>
<td>17</td>
</tr>
<tr>
<td>9.1</td>
<td>Selection of recommended factors</td>
<td>17</td>
</tr>
<tr>
<td>9.2</td>
<td>Service factors</td>
<td>17</td>
</tr>
<tr>
<td>9.3</td>
<td>Application classification numbers</td>
<td>17</td>
</tr>
<tr>
<td>9.4</td>
<td>Determining service factor or application class number</td>
<td>18</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Operational characteristics</td>
<td>18</td>
</tr>
<tr>
<td>9.4.2</td>
<td>System conditions</td>
<td>18</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Special considerations</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>Overhung load</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Lubrication and lubricants</td>
<td>20</td>
</tr>
<tr>
<td>11.1</td>
<td>Lubrication</td>
<td>20</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Ambient temperature</td>
<td>20</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Other considerations</td>
<td>20</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Oil sump temperature</td>
<td>20</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Food and drug</td>
<td>21</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Mounting position</td>
<td>21</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Corrosion</td>
<td>21</td>
</tr>
<tr>
<td>11.2</td>
<td>Lubricant viscosity</td>
<td>21</td>
</tr>
<tr>
<td>11.3</td>
<td>Lubricant recommendation</td>
<td>21</td>
</tr>
<tr>
<td>11.3.1</td>
<td>External cooling</td>
<td>21</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Lubricant viscosity considerations</td>
<td>22</td>
</tr>
<tr>
<td>11.4</td>
<td>Cold temperature conditions</td>
<td>22</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Cold temperature gear lubricants</td>
<td>22</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Sump heaters</td>
<td>22</td>
</tr>
<tr>
<td>11.5</td>
<td>Lubricant types</td>
<td>23</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Rust and oxidation inhibited gear lubricants</td>
<td>23</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Antiscuff lubricants</td>
<td>23</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Synthetic gear lubricants</td>
<td>23</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Synthetic lubricant selection</td>
<td>23</td>
</tr>
<tr>
<td>11.6</td>
<td>Lubricant maintenance</td>
<td>24</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Initial lubricant maintenance</td>
<td>24</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Subsequent lubricant maintenance</td>
<td>24</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Abnormal operating conditions</td>
<td>24</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Cleaning and flushing</td>
<td>24</td>
</tr>
</tbody>
</table>
11.6.5 Cleaning with solvents ..25
11.6.6 Inspection ...25
11.6.7 Lubricant disposal ...25

12 Sound and vibration ...25
13 Assembly and shaft rotation ...25
14 Ratios and output speeds ...28

15 Sizes, designations and ratios for AGMA standard size shaft mounted gear drives ..29
 15.1 AGMA standard sizes ...29
 15.2 Standard designations ..29
 15.3 Ratios ..30

16 Screw conveyor drive dimensions ..30
17 Marking and identification ..30

18 Storage ..30
 18.1 Normal storage ..31
 18.2 Adverse conditions or long term storage31
 18.3 Removal from storage ...31

19 Installation ..31

Annexes
Annex A (informative) Service factors and application classification numbers ..32
Annex B (informative) Keys and keyways for shaft extensions ...46
Annex C (informative) Test and inspection procedures ...53
Annex D (informative) Owner responsibilities ...55
Annex E (informative) Screw conveyor drive dimensions ..57
Annex F (informative) Illustrative examples ...59
Annex G (informative) Recommended bore sizes for AGMA standard size shaft mounted drives68
Annex H (informative) Installation ...69
Annex I (informative) Wormgearing ..73
Annex J Bibliography ..77

Figures
Figure 1 – Threaded rod torque arm ..11
Figure 2 – Torque link ...11
Figure 3 – Single point torque arm ..12
Figure 4 – Shaft rotation ..25
Figure 5 – Parallel shaft spur, helical and herringbone gear drives, single or multiple stages26
Figure 6 – Horizontal bevel gear drives, single stage; horizontal bevel - helical drives, multiple stage27
Figure 7 – Vertical bevel gear drives, single stage; vertical bevel - helical drives, multiple stage27
Figure 8 – Standard designations ..30
Figure B.1 – Diagrams for metric keys ..46
Figure B.2 – Diagrams for metric keyways ..48
Figure B.3 – Diagrams for inch keys with fillet radius and key chamfer ...50
Figure B.4 – Diagrams for inch keyways ...51
Figure E.1 – Drive shaft dimensions ..57
Figure E.2 – Screw conveyor drive mounting dimensions ...58

Tables
Table 1 – Symbols ..2
Table 2 – Shaft diameter tolerances for supporting shafts ...15
Table 3 – Service factor, \(K_{SR} \) ..18
Table 4 – Overhung load factor, \(K_{oh} \) ..20
Table 5 – Viscosity grade requirements ..21
Table 6 – Viscosity grade guidelines ..22
Table 7 – Output speeds for preferred ratios .. 28
Table 8 – Standard sizes and maximum bores .. 29
Table 9 – Nominal ratios ... 30
Table A.1 – Conversion table for single or multi-cylinder engines 33
Table A.2 – Service factors for enclosed gear drives ... 33
Table A.3 – Application classification .. 39
Table A.4 – Industrial duty overhead electric crane service factors 44
Table A.5 – Service factors for industrial duty overhead electric cranes 44
Table A.6 – Mill duty overhead electric crane service factors 44
Table B.1 – Metric dimensions and tolerances of keys, millimeters 47
Table B.2 – Metric dimensions and tolerances of keyways, millimeters 49
Table B.3 – Inch dimensions and tolerances of keys, inches 50
Table B.4 – Inch dimensions and tolerances of keyways, inches 52
Table E.1 – Screw conveyor drive shaft dimensions, inches 57
Table E.2 – Screw conveyor drive mounting dimensions, inches 58
Table G.1 – Recommended output bore diameters for inch shafts 68
Foreword

[The foreword, footnotes and annexes, if any, in this document are provided for informational purposes only and are not to be construed as a part of AGMA Standard 6013-B16, Standard for Industrial Enclosed Gear Drives.]

This standard revises, combines and supersedes two previous independent standards, ANSI/AGMA 6009-A00, Standard for Gearmotors, Shaft Mounted and Screw Conveyor Drives, and ANSI/AGMA 6010-F97, Standard for Spur, Helical, Herringbone and Bevel Enclosed Drives. The history of these standards have their roots in:

- AGMA 420.04, Practice for Enclosed Speed Reducers or Increasers Using Spur, Helical, Herringbone and Spiral Bevel Gears
- AGMA 460.05, Practice for Gearmotors Using Spur, Helical, Herringbone and Spiral Bevel Gears
- AGMA 480.06, Practice for Spur, Helical and Herringbone Gear Shaft-Mounted Speed Reducers

ANSI/AGMA 6013-A06 presents general guidelines and practices for design, rating and lubrication of parallel, concentric, and right angle shaft drives. It includes foot mounted, shaft mounted, screw conveyor drives, and gearmotors. It includes the available data, gear technology, and operational experience.

The comprehensive thermal rating procedure has been removed but is included by reference to AGMA ISO 14179-1.

This standard reflects the consolidation of “Enclosed Drives”, to include gearmotors, shaft mounted, and screw conveyor drives, into a single document.

The allowable stress numbers used in this standard are derived from ANSI/AGMA 2001-D04, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth and ANSI/AGMA 2003-C10, Rating the Pitting Resistance & Bending Strength of Generated Straight Bevel, Zerol Bevel, and Spiral Bevel Gear Teeth, and, along with other rating factors, provide a rating basis for enclosed gear reducers and increasers. The rating formulas are based on many years of experience in the design and application of enclosed gear drives for industrial use. Provisions are included in this standard for using stress cycle factors other than 1.0 to adjust the rating for extended or reduced life. Using a stress cycle adjustment factor does not guarantee a certain number of life hours or stress cycles, but it is a method of approximating gear life under different load and speed conditions.

In addition to a general update to match current industry practices, substantial changes in the new ANSI/AGMA 6013-B16 include:

- moved wormgearing related text to Annex I;
- expanded crane service factor recommendations;
- revised and updated lubrication clause.

The competence to design enclosed gear drives, especially the knowledge and judgment required to properly evaluate the various rating factors, comes primarily from years of experience in designing, testing, manufacturing, and operating similar gear drives. The proper application of the general rating formulas for enclosed gear drives is best accomplished by those experienced in the field.

The first draft of ANSI/AGMA 6013-A06 was created in November 2000. It was approved by the AGMA membership in March 2006. It was approved as an American National Standard on April 25, 2006.

The first draft of ANSI/AGMA 6013-B16 was created in November 2011. It was approved by the AGMA membership in October 2015. It was approved as an American National Standard on April 5, 2016.

Suggestions for improvement of this standard will be welcome. They may be submitted to tech@agma.org.
PERSONNEL of the AGMA Enclosed Drives for Industrial Applications Committee

Chairman: Todd Praneis ... Cotta Transmission Company, LLC
Vice Chairman: Walt Vann ExxonMobil Research and Engineering

ACTIVE MEMBERS

H. Almoghrabi .. Nord Gear Corporation
B. Arno .. Xtek, Inc.
J. Campbell ... Amarillo Gear Company LLC
B. Ford .. Integrated Machinery Solutions, LLC
R. Holly .. Rexnord Gear Group
H. Johnson .. Lufkin Industries, Inc.
W. McFarland .. SEW-Eurodrive, Inc.
J. Posada .. Lufkin Industries, Inc.
C. Smith .. Chalmers & Kubeck, Inc.
W. Weber .. Siemens Industry, Inc.
K. Wheelock ... Santasalo Gears Inc.
American National Standard–

Standard for Industrial Enclosed Gear Drives

1 Scope

This standard is applicable to enclosed gear drives including configurations of parallel, concentric, and right angle shafts. It includes foot mounted, shaft mounted, screw conveyor drives, and gearmotors. These enclosed drives utilize spur, helical, herringbone, double helical, or bevel gearing in single or multiple stages. Bevel gear drives may include shaft angles other than 90 degrees.

1.1 Limitations

This standard is applicable to gear drives having single or multiple stage gearing with pitch line velocities not exceeding 7000 ft/min for spur, helical and spiral bevel gearing and 6000 ft/min for straight bevel, and shaft speeds not exceeding 4500 rpm for helical, spur, straight bevel, and spiral bevel gearing.

1.2 Exceptions

This standard does not cover epicyclic or crossed-helical gear drives. This standard does not cover the rating of spur, helical, or bevel gears due to wear or scuffing. The design and rating of the electric motor is beyond the scope of this standard. This standard does not apply to gear drives that are covered by other specific AGMA application standards.

For gear drives using wormgears, the design parameters shall be in accordance with the methods and procedures of ANSI/AGMA 6035-A02 for double enveloping wormgears and ANSI/AGMA 6034-B92 for cylindrical wormgears. Refer to Annex I for more details.

2 Normative references

The following documents contain provisions which, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions shown were valid. All standards are subject to revision, and the users of this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

AGMA 908-B89, Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth
AGMA ISO 14179-1, Gear Reducers – Thermal Capacity Based on ISO/TR 14179-1
ANSI/AGMA 1010-F14, Appearance of Gear Teeth – Terminology of Wear and Failure
ANSI/AGMA 1012-G05, Gear Nomenclature, Definitions of Terms with Symbols
ANSI/AGMA 2001-D04, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth
ANSI/AGMA 2003-C10, Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel, and Spiral Bevel Gear Teeth
ANSI/AGMA 6000-B96, Specification for Measurement of Linear Vibration on Gear Units
ANSI/AGMA 6001-E08, Design and Selection of Components for Enclosed Gear Drives
ANSI/AGMA 6025-D98, Sound for Enclosed Helical, Herringbone, and Spiral Bevel Gear Drives
ANSI/AGMA 6034-B92, Practice for Enclosed Cylindrical Wormgear Speed Reducers and Gearmotors
ANSI/AGMA 6035-A02, Design, Rating and Application of Industrial Globoidal Wormgearing