American National Standard

Industrial Gear Lubrication
American National Standard

Industrial Gear Lubrication
ANSI/AGMA 9005-F16
[Revision of ANSI/AGMA 9005-E02]

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing or using products, processes or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation of this standard should be addressed to the American Gear Manufacturers Association.

CAUTION NOTICE: AGMA technical publications are subject to constant improvement, revision or withdrawal as dictated by experience. Any person who refers to any AGMA Technical Publication should be sure that the publication is the latest available from the Association on the subject matter.

[Tables or other self-supporting sections may be referenced. Citations should read: See ANSI/AGMA 9005-F16, Industrial Gear Lubrication, published by the American Gear Manufacturers Association, 1001 N. Fairfax Street, Suite 500, Alexandria, Virginia 22314, http://www.agma.org.]

Approved March 23, 2016

ABSTRACT

This standard provides lubrication guidelines for enclosed and open gearing installed in general industrial power transmission applications. It is not intended to supplant specific instructions from the gear manufacturer.

Published by

American Gear Manufacturers Association
1001 N. Fairfax Street, Suite 500, Alexandria, Virginia 22314

Copyright © 2016 by American Gear Manufacturers Association
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America

ISBN: 978-1-55589-052-0
Contents

Foreword .. iv
1 **Scope** ... 1
2 **Normative references** ... 1
3 **Terms and definitions** ... 2
4 **Overview** ... 3
 4.1 **General** ... 3
 4.2 **Lubricant selection** .. 4
 4.3 **Lubricant classifications** ... 5
 4.3.1 **Inhibited** ... 5
 4.3.2 **Antiscuff** ... 5
 4.3.3 **Compounded** ... 5
5 **Minimum performance requirements** .. 6
6 **Enhanced lubricant characteristics** .. 9
 6.1 **Improved low temperature properties** .. 9
 6.2 **Improved high temperature properties** ... 9
 6.3 **Broad temperature properties** ... 9
 6.4 **Enhanced wear protection properties** ... 9
 6.5 **Efficiency** ... 10
 6.6 **Foaming** ... 10
 6.7 **Enhanced rust prevention properties** ... 10
7 **System considerations** .. 10
 7.1 **Operating conditions** ... 10
 7.1.1 **Speed** ... 10
 7.1.2 **Ambient temperature** ... 11
 7.1.3 **Oil sump temperature** .. 11
 7.1.4 **Low temperature gear oils** .. 11
 7.1.5 **System cleanliness** .. 11
 7.1.6 **Other conditions** .. 12
 7.2 **Thermal management** ... 12
 7.2.1 **Heaters** .. 12
 7.2.2 **Coolers** ... 12
 7.3 **Lubrication methods** .. 12
 7.3.1 **Splash-enclosed gearboxes** .. 12
 7.3.2 **Circulating pump-enclosed gearboxes** .. 13
 7.3.3 **Manual application – open gearing** ... 13
 7.3.4 **Spray systems – open gearing** ... 13
 7.4 **Protective devices** ... 13
 7.5 **Lubricant selection** ... 13
8 **Open gearing** .. 14
Annexes
Annex A – Lubricant properties and methods of measurement.. 15
Annex B – Guideline for lubricant viscosity grade selection .. 21
Annex C – Guideline for determining lubricant type based on application 27
Annex D – Guideline for lubrication of open gearing not covered by ANSI/AGMA 6114 28
Annex E – Guideline for recirculating lubricant condition monitoring ... 29
Annex F – Lubrication system maintenance ... 32
Annex G – Antiwear and antiscuff additives ... 34
Annex H – High speed gearbox lubrication ... 36
Annex I – Bibliography .. 38

Tables
Table 1 – Viscosity grade requirements... 5
Table 2 – Minimum performance requirements for inhibited (RO) lubricants 6
Table 3 – Minimum performance requirements for antiscuff (AS) lubricants 7
Table 4 – Minimum performance requirements for compounded (CP) lubricants 8
Table B.1 – Viscosity grade at bulk oil operating temperature for oils having a viscosity index of 90 for spur, helical and bevel gears .. 22
Table B.2 – Viscosity grade at bulk oil operating temperature for oils having a viscosity index of 120 for spur, helical and bevel gears .. 23
Table B.3 – Viscosity grade at bulk oil operating temperature for oils having a viscosity index of 160 for spur, helical and bevel gears .. 24
Table B.4 – Viscosity grade at bulk oil operating temperature for oils having a viscosity index of 240 for spur, helical and bevel gears .. 25
Table B.5 – ISO viscosity grade guidelines for enclosed cylindrical wormgear drives 26
Table B.6 – ISO viscosity grade guidelines for enclosed globoidal wormgear drives 26
Table C.1 – Lubricant classification guidelines .. 27
Table C.2 – Examples of operation for driving units as they relate to Table C.1 27
Table C.3 – Examples of operating modes of driven units – industrial gears 27
Table D.1 – Minimum viscosity recommendations for open gearing – Continuous lubricant application ... 28
Table D.2 – Minimum viscosity recommendations for open gearing – Intermittent lubricant application ... 28

©AGMA 2016 – All rights reserved
Foreword

[The foreword, footnotes and annexes, if any, in this document are provided for informational purposes only and are not to be construed as a part of ANSI/AGMA Standard 9005-F16, Industrial Gear Lubrication.]

AGMA formed the Lubrication Committee in 1938 to study gear lubrication problems. This committee drafted tentative standard 250.01, Lubrication of Enclosed and Open Gearing, which was accepted in 1943 and adopted as a full standard in 1946. Lubrication Standard 250.01 was revised to include only industrial enclosed gearing and was accepted by the membership in 1955 as AGMA 250.02. AGMA 250.03, which was published in 1972, superseded AGMA 250.02 as well as AGMA 250.02A, Typical Manufacturer’s Oils Meeting AGMA Standard 250.02, May, 1956, and AGMA 252.02, Mild Extreme Pressure Lubricants, May 1959. The list of Typical Manufacturer's Oils was eliminated due to difficulties in keeping such a list up to date. AGMA 250.03 contained instead, a list of detailed specifications that had to be met before an oil could be recommended for use in AGMA rated gear drives. It then became the responsibility of the oil supplier to certify a particular product as meeting AGMA specifications. AGMA 250.04, published in 1981, eliminated lead napthenate as an EP additive and adjusted the AGMA lubricant numbering system to be coincident with the viscosity ranges established by the American Society for Testing Materials (ASTM D 2422), the British Standards Institute (B.S. 4231), and the International Standards Organization (ISO 3448).

The elimination of open gearing, where the bearings are lubricated separately, from AGMA 250.02 created the need for a new standard to cover this area of lubrication. AGMA Standard AGMA 251.01, Lubrication of Industrial Open Gearing, was approved in April 1963. This standard was revised in September, 1974. AGMA 251.02 extended coverage to bevel gears. Other changes included the addition of AGMA Lubricant Numbers based on the ASTM viscosity system and complete specifications for R & O gear oils and EP gear lubricants, and the addition of an appendix on test procedures and limits.

AGMA Standard 9005-D94 again combined enclosed and open gearing, superseding AGMA 250.04 and AGMA 251.02. In addition, it was updated to reflect market changes in availability of heavy bodied open gear lubricants. It was also expanded to provide coverage of modern technology in the area of synthetic oils. Synthetic oils were recognized as a separate class of lubricants with their own specification requirements. Specifications of EP oils were upgraded to reflect advances in technology. EP oils were no longer recommended for wormgear service. Pitch line velocity replaced center distance as the parameter for lubricant selection in other than double enveloping wormgear applications. Annex B provided a copy of Table 3 from AGMA 250.04 for information only.

References to Saybolt viscosity (SSU) were eliminated in favor of kinematic viscosity (mm²/s, commonly referred to as cSt). This was consistent with practices of the American Society for Testing Materials, the Society of Tribologists and Lubrication Engineers, the British Standards Institution, and industry in general. Annex A provided information on the theory of elastohydrodynamic lubrication.

ANSI/AGMA 9005-E02 attempted to offer the end user and equipment builder more definitive guidelines for selecting lubricants based on current theory and practice in the industry, and attempted to align with current ISO standards. The document was focused on providing the correct viscosity and performance level for the application by providing the user a series of informative tables to match their equipment type, operation, and needs to define an appropriate finished lubricant. The first draft of ANSI/AGMA 9005-E02 was made in May 1999. It was approved by the AGMA membership on March 13, 2003. It was approved as an American National Standard on December 31, 2002.

ANSI/AGMA 9005-F16 incorporates updated lubricant performance characteristic test methods and criteria.

Historically, antiscuff lubricants have been called extreme pressure or EP. Extreme pressure is a generic term that is not an accurate description of a lubricant type. Users of this standard are encouraged to transition their terminology away from EP and toward antiscuff or AS.

The FE 8 roller bearing test has been added to the antiscuff table.

A new section has been added describing lubricant enhanced performance characteristics to aid the user in selecting a lubricant with enhanced characteristics.
The previous edition of this standard moved the focus toward lubricant performance characteristics. This edition continues this trend with the lubrication application information present in previous editions being transitioned to AGMA application standards. Those standards are best suited to address the specific lubrication needs for each application. This change will take a full revision cycle of all the applicable AGMA application standards to be fully implemented. Therefore, some application information has been retained but is expected to diminish or be eliminated in future editions of this standard.

The end user is encouraged to work with their equipment builder and lubricant supplier to achieve the most reliable system for their needs.

The first draft of ANSI/AGMA 9005-F16 was created in May 2012. It was approved by the membership on February 2016 and as an American National Standard on March 23, 2016.

Suggestions for improvement of this standard will be welcome. They may be submitted to tech@agma.org.
PERSONNEL of the AGMA Industrial Gear Lubrication Committee

Chairman: W. Hankes ... A-C Equipment Services
Vice Chairman: W. Vann.. ExxonMobil Research and Engineering

ACTIVE MEMBERS

E. Akucewich... The Lubrizol Corporation
A. Cardis.. Consulting, LLC
W. Cates... Shell Global Solutions (US) Inc.
R. Errichello... Geartech
J. Haspert... Castrol Industrial North America Inc.
J. Kolonko.. Rexnord Gear Group
S. Mazzola... Kluber Lubrication North America L.P.
E. Pieroni.. Petron Corporation
S. Rea .. Chemtura Corporation
B. Rhode ... Afton Chemical Corporation
A. Rucci ... FLSmidth Inc.
J. Stacey ... Metso Minerals
W. Weber .. Siemens Industry, Inc.
D. Yatzook .. Artec Machine Systems
J. Zar ... Rexnord Gear Group
American National Standard–

Industrial Gear Lubrication

1 Scope

This standard provides lubricant classifications, guidelines for minimum performance characteristics, and generalized application and servicing guidelines for both open and enclosed metallic gearing that has been designed and rated in accordance with applicable AGMA Standards. The applicable gear types include spur, helical including double helical and herringbone, worm, non-offset bevel, and face gears.

This standard does not address grease lubricated enclosed gearboxes or aerospace applications. The special regulatory requirements associated with food or drug handling applications are not addressed in this standard, however, the minimum performance characteristics apply. This standard is not intended to replace any existing application standards such as aerospace, automotive, marine, industrial enclosed drives, high speed applications, mill, kiln, or wind turbines. See applicable AGMA application standards for lubrication specific guidelines.

NOTE: This standard is not intended to supplant any specific recommendations of gear manufacturers.

2 Normative references

The following documents contain provisions, which through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions listed were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to apply the most recent editions of the standards indicated below:

- ASTM D2893-04(2014)e1, Standard Test Method for Oxidation Characteristics of Extreme-Pressure Lubrication Oils
- ASTM D5950-14, Standard Test Method for Pour Point of Petroleum Products (Automatic Tilt Method)
- DIN 51819-3:2016-02, Testing of lubricants – Mechanical-dynamic testing in the roller bearing test apparatus FE8 – Part 3: Test method for lubricating oils, axial cylindrical roller bearing
- ISO 2160:1998 (ASTM D130-12), Petroleum products – Corrosiveness to copper – Copper strip test
- ISO 2592:2000 (ASTM D92-12b), Determination of flash and fire points – Cleveland open cup method
- ISO 2909:2002 (ASTM D2270-10e1), Petroleum products – Calculation of viscosity index from kinematic viscosity