American National Standard

Standard for Design and Specifications of Gearboxes for Wind Turbines
Standard for Design and Specification of Gearboxes for Wind Turbines
ANSI/AGMA/AWEA 6006-A03

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation of this standard should be addressed to the American Gear Manufacturers Association.

CAUTION NOTICE: AGMA technical publications are subject to constant improvement, revision, or withdrawal as dictated by experience. Any person who refers to any AGMA technical publication should be sure that the publication is the latest available from the Association on the subject matter.


Approved January 9, 2004

ABSTRACT

This standard is intended to apply to wind turbine gearboxes. It provides information for specifying, selecting, designing, manufacturing, procuring, operating and maintaining reliable speed increasing gearboxes for wind turbine generator system service.

Annex information is supplied on: wind turbine architecture, wind turbine load description, quality assurance, operation and maintenance, minimum purchaser gearbox manufacturer ordering data, lubrication selection and monitoring, determination of an application factor from a load spectrum using the equivalent torque, and bearing stress calculations.

Published by
American Gear Manufacturers Association
500 Montgomery Street, Suite 350, Alexandria, Virginia 22314

Copyright © 2003 by American Gear Manufacturers Association
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America

Contents

Foreword ............................................................... iv
1 Scope ...................................................................... 1
2 Normative references ............................................... 1
3 Definitions and symbols ........................................... 2
4 Design specification ................................................ 7
5 Gearbox design and manufacturing requirements ............... 11
6 Lubrication .......................................................... 28
7 Other important items .............................................. 33

Bibliography .............................................................. 92

Annexes

A Wind turbine architecture ........................................... 35
B Wind turbine load description ....................................... 41
C Quality assurance .................................................... 49
D Operation and maintenance .......................................... 55
E Minimum purchaser and gearbox manufacturer ordering data .... 57
F Lubrication selection and condition monitoring .................. 61
G General gear information ............................................. 77
H Determination of the application factor, $K_A$, from a given load spectrum using the equivalent torque, $T_{eq}$ ................. 79
I Bearing stress calculation ............................................ 83

Figures

1 3-stage parallel shaft gearbox .................................... 20
2 3-stage planet/helical hybrid ...................................... 20
3 Bearing assembly .................................................... 21

Tables

1 Symbols ................................................................... 3
2 Minimum basic rating life, $L_{h10}$ ................................ 13
3 Guide values for maximum contact stress for rolling element bearings at Miner’s sum dynamic equivalent bearing load ................. 13
4 Bearing lubricant operating temperature for calculation of viscosity ratio, $\kappa$. 14
5 Temperature gradients for calculation of operating clearance .......... 15
6 Required gear accuracy .............................................. 17
7 Recommended gear tooth surface roughness ..................... 17
8 Bearings for combined loads ....................................... 18
9 Bearings for pure radial load ....................................... 19
10 Bearings for pure axial loads ...................................... 19
11 Bearing selection matrix – legend to symbols .................. 22
12 Bearing selection matrix for the low speed shaft/planet carrier .... 22
13 Bearing selection matrix for the low speed intermediate shaft .... 23
14 Bearing selection matrix for the high speed intermediate shaft ..... 24
15 Bearing selection matrix for the high speed shaft ................ 25
16 Bearing selection matrix for the planet wheel .................... 26
17 Lubricant cleanliness .............................................. 30
Foreword

[The foreword, footnotes and annexes, if any, in this document are provided for informational purposes only and are not to be construed as a part of ANSI/AGMA/AWEA 6006-A03, Standard for Design and Specification of Gearboxes for Wind Turbines.]

The operation and loading of a wind turbine speed increasing gearbox is unlike most other gear applications. The intent of this standard is to describe the differences. Much of the information is based on field experience. This standard is a tool whereby wind turbine and gearbox manufacturers can communicate and understand each other’s needs in developing a gearbox specification for wind turbine applications. The annexes present informative discussion of various issues specific to wind turbine applications and gear design.

A combined committee of AWEA and AGMA members representing wind turbine manufacturers, operators, researchers, consultants, and gear, bearing and lubricant manufacturers were responsible for the drafting and development of this standard.

The committee first met in 1993 to develop AGMA/AWEA 921–A97, Recommended Practices for Design and Specification of Gearboxes for Wind Turbine Generator Systems. The AGMA Information Sheet was approved by the AGMA/AWEA Wind Turbine Gear Committee on October 25, 1996 and by the AGMA Technical Division Executive Committee on October 28, 1996. This standard supersedes AGMA/AWEA 921–A97.

The first draft of ANSI/AGMA/AWEA 6006–A03 was made in March, 2000. It was approved by the AGMA membership in October, 2003. It was approved as an American National Standard on January 9, 2004.

Suggestions for improvement of this standard will be welcome. They should be sent to the American Gear Manufacturers Association, 500 Montgomery Street, Suite 350, Alexandria, Virginia 22314.
PERSONNEL of the AGMA/AWEA Wind Turbine Committee

Chairman: B. Reardon ...................... FPL Energy
Vice Chairman: J. Muller .................... GEARTECH

ACTIVE MEMBERS

J.B. Amendola ......................... MAAG Gear AG
C.D. Barrett ......................... BP Chemicals
J. Bello .......................... GE Transportation Systems
A.B. Cardis ...................... Exxon Mobil R&E Company
P. Clement ..................... SKF Belgium
M. Correns ........................ INA Waelzlager Schaeffler OHG
J. Demtroder ....................... NEG Micon A/S
S. Eatherton ....................... Seawest Windpower, Inc.
R.L. Errichello ..................... GEARTECH
P. Flamang ........................ Hansen Transmissions International nv
G.P. Fox ................................ Timken Company
U. Giger ......................... MAAG Gear AG
R. Godau .......................... FAG Kugelfischer
R. Green ........................... R7 Group
E.C. Hahlbeck ...................... Powertrain Engineers, Inc.
R. Hess ............................. A. Friedr. Flender GmbH
D. Kresse ......................... Consultant
O.A. LaBath ....................... Gear Consulting Services of Cincinnati, LLC
A. Leino .......................... Metso Drives Oy
J. Magnuson ...................... Gear Works – Seattle, Inc.
B. McNiff ........................ McNiff Light Industries
D.R. McVittie ....................... Gear Engineers, Inc.
A.G. Milburn ....................... Milburn Engineering, Inc.
L.G. Mumper ..................... SKF Industrial Division
W. Musial ........................ National Renewable Energy Lab.
B. O’Connor ....................... The Lubrizol Corporation
R. Seufert .......................... FAG Kugelfischer
K. Steingroever .................... FZG der TU Muenchen
J. Stover ........................ C.C. Jensen, Inc.
H. Sutherland ....................... Sandia National Laboratories
T. Takahashi ....................... Komatsu Ltd.
Y. Tozaki ......................... Mitsubishi Heavy Industries, Ltd.
F.C. Uherek ....................... Flande Century
J. Westergaard ..................... Boreal Enterprises
M. Winther-Jensen .................. Riso

ASSOCIATE MEMBERS

K. Acheson ......................... Gear Works–Seattle, Inc.
T.L. Baker ........................ Timken Company
D. Batista ........................ Swantech
M. Beltowski ....................... GE Transportation Systems
E.T.D. Bjerregaard .................. Riso
E.J. Bodensieck ...................... Bodensieck Engineering Company
American National Standard -

Standard for Design and
Specification of
Gearboxes for Wind
Turbines

1 Scope

This standard applies to gearboxes for wind turbines with power capacities ranging from 40 kW to 2 MW. It applies to all parallel axis, one stage epicyclic, and combined one stage epicyclic and parallel shaft enclosed gearboxes. The provisions made in this standard are based on field experience with wind turbines having the above power capacities and configurations.

Guidelines of this standard may be applied to higher capacity wind turbines provided the specifications are appropriately modified to accommodate the characteristics of higher capacity wind turbines.

Life requirements apply to wind turbines with a minimum design lifetime of 20 years.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below.

AGMA 901-A92, A Rational Procedure for Preliminary Design of Minimum Volume Gears

AGMA 913-A98, Method for Specifying the Geometry of Spur and Helical Gears

AGMA 925-A03, Effect of Lubrication on Gear Surface Distress

AMS 2301, Aircraft quality steel cleanliness, magnetic particle inspection procedure

ANSI Y12.3-1968, Letter symbols for quantities used in mechanics of solids

ANSI/AGMA 1012-F90, Gear Nomenclature, Definitions of Terms with Symbols

ANSI/AGMA 2101-C95, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth

ANSI/AGMA 6000-B96, Specification for Measurement of Linear Vibration on Gear Units

ANSI/AGMA 6001-D97, Design and Selection of Components for Enclosed Gear Drives

ANSI/AGMA 6025-D98, Sound for Enclosed Helical, Herringbone, and Spiral Bevel Gear Drives

ANSI/AGMA 6110-F97, Standard for Spur, Helical, Herringbone and Bevel Enclosed Drives

ANSI/AGMA 6123-A88, Design Manual for Enclosed Epicyclic Metric Module Gear Drives

ANSI/AGMA 9005-E02, Industrial Gear Lubrication

ANSI/AGMA/ISO 1328-1, Cylindrical Gears - ISO System Of Accuracy - Part 1: Definitions and Allowable Values of Deviations Relevant to Corresponding Flanks of Gear Teeth

ASTM A534, Standard specification for carburizing steels for anti-friction bearings

Det Norske Veritas Classification AS, Classification Notes No. 41.2, Calculation of Gear Rating for Marine Transmissions, July 1993

DIN ISO 281 Bbl. 4:2003, Dynamische Tragzahl und nominelle Lebensdauer – Verfahren zur Berechnung der modifizierten Referenzlebensdauer für allgemein belastete Wälzlager (Dynamic load ratings and life – Method for calculation of the modified reference rating life for generally loaded rolling bearings)1)

DIN 743:2000, Tragfähigkeitsberechnung von Wellen und Achsen (Calculation of load capacity of shafts and axles)

1) English translation available as ISO TC 4/SC 8 N254a