Abstract

This document establishes a standard for the design, analysis, material selection and characterization, fabrication, test, and inspection of structural items in space systems, including payloads, spacecraft, upper-stages, and expendable and reusable launch vehicles. This standard, when implemented on a particular space system, will assure high confidence in achieving safe, reliable operation in all phases of the mission. This document applies specifically to all structural items including fracture-critical hardware used in space systems during all phases of the mission—with the following exceptions: adaptive structures, engines, solid rocket nozzles, and thermal protection systems.
Contents

Foreword .. vi
1 Scope .. 1
2 Tailoring ... 1
3 Applicable Documents .. 1
4 Vocabulary .. 2
4.1 Acronyms and Abbreviated Terms .. 2
4.2 Terms and Definitions .. 3
5 General Requirements ... 7
5.1 Mission Requirements ... 7
5.1.1 Loads and Pressure ... 7
5.1.2 Environments ... 8
5.1.3 Life ... 9
5.2 Design Requirements ... 9
5.2.1 Static Strength .. 9
5.2.2 Margin of Safety ... 9
5.2.3 Buckling Strength ... 10
5.2.4 Static Stiffness ... 10
5.2.5 Dynamic Behavior ... 11
5.2.6 Dimensional Stability ... 11
5.2.7 Fatigue Life .. 11
5.2.8 Damage Tolerance (Safe Life) ... 11
5.2.9 Impact Damage Tolerance ... 12
5.2.10 Stress-Rupture Life .. 12
5.2.11 Corrosion and Stress-Corrosion Cracking Control ... 12
5.2.12 Outgassing ... 12
5.2.13 Meteoroid and Orbital Debris Protection ... 12
5.3 Material Requirements .. 13
5.3.1 Metallic Materials ... 13
5.3.2 Composite Materials .. 13
5.3.3 Glass and Ceramic Materials .. 14
5.3.4 Polymeric Materials ... 15
5.4 Fabrication and Process Control .. 16
5.5 Quality Assurance ... 16
5.5.1 Inspection ... 16
8.1 Interface Control Documents ... 29
8.2 Applicable (Contractual) Documents ... 29
8.3 Analysis Reports ... 29
8.3.1 Stress Analysis Report .. 29
8.3.2 Fatigue or Damage Tolerance (Safe Life) Analysis Reports 30
8.3.3 Fracture/Impact Damage Control Plan/Report 30
8.3.4 Inspection Reports .. 30
8.3.5 Dynamic Analysis .. 30
9 Bibliography .. 30

Tables
Table 1 — Minimum Design Factors of Safety .. 11
Table 2 — Design Requirements Verification Matrix 19
Table 3 — Minimum Qualification Test Factors .. 25
Table 4 — Published Specific Requirements for Special Structural Items 27
Foreword

This standard was prepared by the AIAA Structures Committee of Standards (CoS) based on an Aerospace Technical Operating Report, TOR-2003 (8583)-2894, Space Systems-Structures Design and Test Requirements, 2 August 2004.

The AIAA Structures CoS was formed in 2004 with an emphasis on inclusion of experts in aerospace industry, academia, and interested government agencies. Deliberations focused heavily on adapting this standard to new space systems not only developed for the United States Air Force/Space and Missile Systems Center (USAF/SMC) but also for civil and commercial applications.

At the time of approval, the members of the AIAA Structures CoS were:

- Pravin Aggarwal, NASA Marshall Space Flight Center
- Basem Alzahabi, Kettering University
- Steve Brodeur, Chair, Swales Aerospace
- Meredith Cawley, Liaison, AIAA
- Jim Chang, Co-Chair, The Aerospace Corporation
- Sean Coghlan, Air Force Research Laboratory
- Vinay Dayal, Iowa State University
- Bob Farahmand, The Boeing Company
- Anindya Ghoshal, United Technologies Research Center
- Hector Gomez, Northrop Grumman
- Norman Knight, General Dynamics – Advanced Information Systems
- Larry Loh, Lockheed Martin Corporation
- Nat Patel, Co-Chair, The Aerospace Corporation
- William Schonberg, University of Missouri-Rolla
- Larry Trilling, Ball Aerospace & Technologies Corporation
- Chris Wright, Lockheed Martin Corporation

The above consensus body approved this document in June 2005.

The AIAA Standards Executive Council (Mr. Amr ElSawy, Chairman) accepted the document for publication in July 2005.

The AIAA Standards Procedures dictate that all approved Standards, Recommended Practices, and Guides are advisory only. Their use by anyone engaged in industry or trade is entirely voluntary. There is no agreement between industry or trade, in general or specific, and AIAA to adhere to any AIAA standards publication and no commitment to conform to or be guided by standards reports. However, should a procuring authority choose to use this standard and contractually impose it upon a contractor and/or subcontractor, the use of this standard will be as defined by that particular contract.

In formulating, revising, and approving standards publications, the committees on standards will not consider patents that may apply to the subject matter. Prospective users of the publications are responsible for protecting themselves against liability for infringement of patents or copyright or both.
1 Scope

This document establishes a standard for the design, analysis, material selection and characterization, fabrication, test, and inspection of structural items in space systems, including payloads, spacecraft, upper-stages, and expendable and reusable launch vehicles. This standard, when implemented on a particular space system, will assure high confidence in achieving safe, reliable operation in all phases of the mission. This document applies specifically to all structural items including fracture-critical hardware used in space systems during all phases of the mission—with the following exceptions: adaptive structures, engines, solid rocket nozzles, and thermal protection systems.

2 Tailoring

For a specific program or project, the requirements defined in this Standard may be tailored to match the actual requirements of the particular program or project. Tailoring of requirements shall be undertaken in agreement with the procuring authority where applicable.

Tailoring is a process by which individual requirements or specifications, standards, and related documents are evaluated and made applicable to a specific program or project by selection, and in some exceptional cases, modification and addition of requirements in the standards.

3 Applicable Documents

The following applicable documents contain provisions which, through reference in this text, constitute provisions of this standard.

- ANSI/AIAA S-080 Space Systems - Metallic Pressure Vessels, Pressurized Structures, and Pressure Components
- ANSI/AIAA S-081 Space Systems - Composite Overwrapped Pressure Vessel (COPVs)
- ANSI/AIAA S-096 Space Systems - Flywheel Rotor Assemblies
- ASTM E-8 Test Methods for Tension of Metallic Materials
- ASTM E-9 Test Methods for Compression Testing of Metallic Materials at Room Temperature
- ASTM E-399 Test Method for Plane Strain Fracture Toughness of Metallic Materials
- ASTM E-647 Test Method for Measurement of Fatigue Crack Growth Rates
- ASTM E-740 Practice for Fracture Testing with Surface-Crack Tension Specimens
- DOT/FAA/AR-MMPDS-01 Metallic Materials Properties Development and Standardization
- ISO 21347 Space Systems-Fracture and Damage Control