B-17

2-D Direct Parts Marking Guideline
ABOUT AIAG

Purpose Statement
Founded in 1982, AIAG is a globally recognized organization where OEMs and suppliers unite to address and resolve issues affecting the worldwide automotive supply chain. AIAG’s goals are to reduce cost and complexity through collaboration; improve product quality, health, safety, and the environment; and optimize speed to market throughout the supply chain.

AIAG Organization
AIAG is made up of a board of directors, an executive director, executives on loan from member companies, associate directors, a full-time staff, and volunteers serving on project teams. Directors, department managers, and program managers plan, direct, and coordinate the association’s activities under the direction of the executive director.

AIAG Projects
Volunteer committees focus on business processes or supporting technologies and methodologies. They conduct research and develop, publish, and provide training on standards, conventions, standard business practices, white papers, and guidelines in the areas of automatic identification, CAD/CAM, EDI/electronic commerce, continuous quality improvement, health focus, materials and project management, occupational health & safety, returnable containers and packaging systems, transportation/ customs, and truck & heavy equipment.

AIAG PUBLICATIONS
An AIAG publication reflects a consensus of those substantially concerned with its scope and provisions. An AIAG publication is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an AIAG publication does not in any respect preclude anyone from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the publication.

CAUTIONARY NOTICE
AIAG publications are subject to periodic review and users are cautioned to obtain the latest editions.

MAINTENANCE PROCEDURE
Recognizing that this AIAG publication may not cover all circumstances, AIAG has established a maintenance procedure. Please refer to the Maintenance Request Form at the back of this document to submit a request.

Published by:
Automotive Industry Action Group
26200 Lahser Road, Suite 200
Southfield, Michigan 48033
Phone: (248) 358-3570 • Fax: (248) 358-3253

APPROVAL STATUS
The AIAG Material Management Steering Committee and designated stakeholders approved this document for publication on February 11, 2009.

AIAG COPYRIGHT AND TRADEMARK NOTICE:
© 2009 Automotive Industry Action Group, except that copyright is not claimed as to any part of an original work prepared by a U.S. or state government officer or employee as part of the person’s official duties. Except as noted above, all rights are reserved by AIAG and no part of these materials may be reproduced, reprinted, stored in a retrieval system, or transmitted, in any form or by any means, electronic, photocopying, recording, or otherwise, without the prior written permission of Automotive Industry Action Group. Copyright infringement is a violation of federal law subject to criminal and civil penalties.

AIAG and Automotive Industry Action Group are registered service marks of the Automotive Industry Action Group. Automotive Industry Action Group makes no claim to any trademark of a third party. Trademarks of third parties included in these materials are the property of their respective owners.

© 2009 Automotive Industry Action Group

FOREWORD

This guideline was prepared by the 2D Direct Parts Marking (DPM) Work Group of the Automatic Identification Data Collection Work Group. AIAG believes that the use of this guideline will help maximize the benefits of auto ID as an industry-wide productivity tool. Without guidelines, industry use of auto ID technology would be encumbered by many different protocols and methodologies.

The mission of the 2D DPM Work Group is to provide information on direct parts marking of Data Matrix and/or QR Codes using laser, dot-peen, and inkjet marking technologies.

This guideline was developed to help educate end users on the most common marking methods used throughout the automotive supply chain. The team obtained input from automotive industry standards and companies, non-automotive industry standards and companies, parts-marking technology providers, code-reading technology providers, label companies, and various industry experts. In developing this guideline, the project team considered current 2D symbology parts identification methods, the common needs of manufacturing and assembly locations, and the performance capabilities of various marking and scanning technologies. After much research and many deliberations, a consensus was developed.
ACKNOWLEDGEMENTS

The following individuals and companies were instrumental in the development of this guideline:

Morris Brown.................................AIAG
Richard TervoChrysler Corporation
Matt Engle.................................Cognex
Carl Gerst.................................Cognex
Jamie PearceCognex
Andy RuzzinColumbia Marking Tools
Gary NiemenskiControl Laser
Michael StoverControl Laser
Jim CourageDelphi
Francis J. Maslar *Ford Motor Company
Rick Scorey **Freedom Technologies Corporation
Larry GrahamGeneral Motors Corporation
Aram PapazianGeneral Motors Corporation
Bill HoffmanHoffman Systems
Dan Reed.................................HTE
Andy ReedMcNaught and McKay
Eric McElroy ***Mecco
Bill McCrackenMicroscan
Henry OakesOASIS
Craig HarmonQED Systems
Jake WielochRofin
Jason LeeSiemens
Jeff ThorsenTelesis Technologies, Inc.
Glenn SpitzWebscan Inc.

* = Chair
** = Co-Chair
*** = Document Coordinator
Table of Contents

ABOUT AIAG .. 1

FOREWORD ... 3

ACKNOWLEDGEMENTS .. 4

TABLE OF CONTENTS ... 6

INTRODUCTION .. 9

SCOPE ... 9

1 DEFINITIONS .. 11

2 GENERAL: 2D DIRECT PARTS MARKING (DPM) ... 12

2.1 DATA MATRIX AND QR CODE .. 12

2.2 PROJECT CONSIDERATIONS ... 18

2.3 MARK DURABILITY ... 19

2.4 PART CHARACTERISTICS ... 20

2.4.1 Surface Curvature ... 26

2.4.2 Thickness .. 26

2.5 MARKING METHOD EFFECT ON PART INTEGRITY .. 27

2.6 MARKING METHOD SELECTION CRITERIA ... 27

3 LASER MARKING .. 29

3.1 OVERVIEW .. 29

3.2 COMMON INDUSTRIAL LASER SYSTEM TYPES ... 31

3.2.1 Solid-State Lasers ... 31

3.2.2 Fiber Lasers ... 32

3.2.3 Gas Lasers ... 32

3.3 LASER SAFETY STANDARDS CLASSIFICATIONS ... 33

3.3.1 Laser Safety and OSHA ... 34

3.3.2 Laser Safety Standards .. 34

3.3.3 Laser Ablation/Engraving ... 34

3.3.4 Laser Annealing ... 34

3.3.5 Laser Discoloration ... 35

3.3.6 Laser Marking Enhancers .. 35

3.4 LASER MARK QUALITY ... 36

3.5 LASER BEAM DELIVERY ... 37

3.6 LASER READING CONSIDERATIONS ... 38

4 DOT-PEEN MARKING .. 39

4.1 OVERVIEW .. 39

4.2 MARK GEOMETRY .. 39

4.3 MARK CONSIDERATIONS ... 40

4.3.1 Limitations of Dot-Peen ... 40

4.3.2 Stylus Cone Angle ... 41

4.3.3 Mark Depth .. 42

4.3.4 Marking System Parameters .. 43

4.3.5 Stylus Material Considerations ... 44

4.4 READING CONSIDERATIONS ... 44

5 SCRIBE MARKING .. 46
Tables

TABLE 1. TERMS AND DEFINITIONS AS USED WITHIN THE B17 DOCUMENT ... 11
TABLE 2. MAXIMUM CHARACTERS FOR GIVEN SYMBOL SIZES FOR DATA MATRIX WITH ECC 200 15
TABLE 3. MAXIMUM CHARACTERS FOR GIVEN SYMBOL SIZES AND ERROR CORRECTION LEVELS FOR QR CODE 16
TABLE 4. MARKING METHOD SELECTION ... 19
TABLE 5. RECOMMENDED MINIMUM SYMBOL CELL SIZE BY SURFACE CONDITION 23
TABLE 6. SURFACE TEXTURE WITH RA=1,50µm OR 60 µin.. 24
TABLE 7. SURFACE TEXTURE WITH RA=2,40µm OR 95 µin... 24
TABLE 8. SURFACE TEXTURE WITH RA=3,25µm OR 128 µin... 25
TABLE 9. SURFACE TEXTURE WITH RA=3,80 µm OR 150 µin... 25
TABLE 10. LASER TO MATERIAL-TYPE INTERACTIONS .. 30
TABLE 11. PHOTONIC SPECTRUM AND LASER WAVELENGTHS ... 31
TABLE 12. STYLUS RECOMMENDATIONS ... 44
TABLE 13. SCRIBE STYLUS RECOMMENDATIONS .. 47
TABLE 14. EQUIVALENCE OF NUMERIC AND ALPHABETIC QUALITY GRADES ... 58
TABLE 15. MEASUREMENTS USEFUL FOR PROCESS CONTROL ... 66

Figures

FIGURE 1. TIRE DATA MATRIX AND QR CODE SYMBOLS WITH 0.020" ELEMENT SIZE ... 17
FIGURE 2. COMPARATOR SHOWING CAST SURFACE ROUGHNESS – LASER MARK .. 21
FIGURE 3. COMPARATOR SHOWING CAST SURFACE ROUGHNESS – DOT-PEEN MARKS .. 22
FIGURE 4. TEXTURE TO IMPROVE READABILITY ... 26
FIGURE 5. MARKING CURVED SURFACES .. 26
FIGURE 6. PHOTONIC SPECTRUM AND LASER WAVELENGTHS .. 31
FIGURE 7. LASER ETCHING/ENGRAVING ... 34
FIGURE 8. LASER ANNEALING ... 35
FIGURE 9. LASER DISCOLORATION ... 35
FIGURE 10. LASER MARKING ENHANCERS .. 36
FIGURE 11. GALVANOMETER BEAM STEERING ... 37
FIGURE 12. MARK GEOMETRY .. 39
FIGURE 13. EXAMPLES OF A SINGLE-DOT MARK GEOMETRY .. 40
FIGURE 14. CROSS SECTIONS OF MATERIAL MARKED WITH VARIOUS STYLUS CONE ANGLES 41
FIGURE 15. PREFERRED STYLUS-TO-TARGET CONFIGURATION .. 42
FIGURE 16. RANGE OF MARK DIAMETER USING 30° STYLUS AT DEPTH .. 43
FIGURE 17. DARK FIELD ILLUMINATION FIGURE 18. BRIGHT FIELD ILLUMINATION ... 44
FIGURE 19. DOT-PEEN MARKING DATA MATRIX AND QR CODES WITH AND WITHOUT PROPER ILLUMINATION 45
FIGURE 20. FILL COMPARISONS .. 46
FIGURE 21. SCRIBED MARKED DATA MATRIX CODE WITH AND WITHOUT PROPER ILLUMINATION 48
FIGURE 22. SAMPLE INKJET MARKS ... 49
FIGURE 23. CONTINUOUS INKJET SYSTEM .. 49
FIGURE 24. WHITE INKJET INK ON GREEN PCB WHEN IMAGED WITH RED LIGHT ... 51
FIGURE 25. ULTRAVIOLET INKJET MARKS .. 52
FIGURE 26. INKJET WITH WHITE BACKGROUND ADDED .. 52
FIGURE 27. LIGHTING TECHNIQUES .. 54
FIGURE 28. TWO METHODS FOR SIZING ROUND MODULES ... 63
FIGURE 29. RESULTS OF USING OPTIONS A AND B ... 64
FIGURE 30. ANGLE DISTORTION ... 65
FIGURE 31. VARIATION FROM NOMINAL FILL .. 65
INTRODUCTION

This two-dimensional (2D) Direct Parts Marking (DPM) Guideline provides information for marking and reading Data Matrix and/or QR Code symbols marked directly on parts using laser, dot-peen, and inkjet technologies. The three technologies noted in this document are currently the most common methods in the automotive industry for marking variable data 2D codes directly on parts. This 2D DPM guideline is intended as a supplement to the AIAG B-4 Parts Identification and Tracking Application Standard. As a guideline, this document is intended to provide general information to help users of DPM technology.

This guideline was developed in part based on a review of many related standards, which are listed in Section 9, References.

SCOPE

To make this guideline as comprehensive as possible, the document begins with the terms most commonly used in the high-volume production auto ID industry and continues through the specialized characteristics of each technology.

- Items to consider when evaluating marking projects
- Features and benefits of laser, inkjet, and dot-peen
- Qualities of each symbology
- Reading techniques
- Mark quality verification

All exhibits are for illustrative purposes only and may not be to scale or code print quality guidelines.