AIAG
Automotive Industry Action Group

Parts Identification and Tracking Application Standard

B-4
AIAG PUBLICATIONS

An AIAG publication reflects a consensus of those substantially concerned with its scope and provisions. An AIAG publication is intended as a guide to aid the manufacturer, the consumer and the general public. The existence of an AIAG publication does not in any respect preclude anyone from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the publication.

CAUTIONARY NOTICE

AIAG publications are subject to periodic review and users are cautioned to obtain the latest editions.

MAINTENANCE PROCEDURE

Recognizing that this AIAG publication may not cover all circumstances, AIAG has established a maintenance procedure. Please refer to the Maintenance Request Form at the back of this document to submit a request.

APPROVAL STATUS

This document was approved for publication by the AIAG Board of Directors on February 10, 2003.

Published by:
Automotive Industry Action Group
2620 Lahser Road, Suite 200
Southfield, Michigan 48034
Phone: (248) 358-3570 • Fax: (248) 358-3253

AIAG Copyright and Trademark Notice:

The contents of all published materials are copyrighted by the Automotive Industry Action Group unless otherwise indicated. Copyright is not claimed as to any part of an original work prepared by a U.S. or state government officer or employee as part of the person’s official duties. All rights are preserved by AIAG, and content may not be altered or disseminated, published, or transferred in part of such content. The information is not to be sold in part or whole to anyone within your organization or to another company. Copyright infringement is a violation of federal law subject to criminal and civil penalties. AIAG and the Automotive Industry Action Group are registered service marks of the Automotive Industry Action Group.

© 2003 Automotive Industry Action Group
FOREWORD

This revision of the B-4 Parts Identification and Tracking Application Standard was prepared by the Automatic Identification Data Collection (AIDC) Work Group. The purpose of this revision is to update the Standard by incorporating symbology options approved by the AIAG since the February 1998 revision.

The B-4 Standard now offers two options for linear symbologies: Code 39 or Code 128, and two options for two-dimensional symbologies: Data Matrix or QR Code.
ACKNOWLEDGEMENT

In June 2002, when this revision of the B-4 Standard was approved by the Automatic Identification Data Collection (AIDC) Work Group, the following members participated:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christina Barkan</td>
<td>Symbol Technologies</td>
</tr>
<tr>
<td>Dennis Barlow</td>
<td>Ford Motor Company</td>
</tr>
<tr>
<td>John Druskinis</td>
<td>Avery Dennison</td>
</tr>
<tr>
<td>Brigitte Dublin</td>
<td>Hand Held Products</td>
</tr>
<tr>
<td>Louis Figarella</td>
<td>RVSI Acuity-CiMatrix</td>
</tr>
<tr>
<td>Larry Graham</td>
<td>General Motors</td>
</tr>
<tr>
<td>Marsha A. Harmon</td>
<td>QED Systems</td>
</tr>
<tr>
<td>Doug Horst</td>
<td>EDS</td>
</tr>
<tr>
<td>Bill Hoffman</td>
<td>Intermec</td>
</tr>
<tr>
<td>Brian St. Pierre</td>
<td>RVSI Acuity CiMatrix</td>
</tr>
<tr>
<td>Richard Tervo</td>
<td>DaimlerChrysler</td>
</tr>
<tr>
<td>Yuji Tsujimoto</td>
<td>DENSO</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

AIAG PUBLICATIONS ... 1
FOREWORD ... 2
ACKNOWLEDGEMENT .. 3
TABLE OF CONTENTS .. 4
1.0 INTRODUCTION ... 6
 SCOPE .. 6
2.0 DEFINITIONS CRITICAL TO THIS STANDARD ... 7
3.0 GENERAL .. 11
 3.1 DATA FIELDS AND DATA IDENTIFIERS ... 11
 3.2 ALLOWABLE DATA CHARACTERS ... 11
 3.3 SUBSTRATES .. 12
4.0 SYMBOLOGIES .. 13
5.0 LINEAR APPLICATIONS ... 14
 5.1 CODE 39 AND CODE 128 .. 14
6.0 2D APPLICATIONS ... 20
 6.1 DATA MATRIX AND QR CODE .. 20
 6.1.1 Code Densities and Dimensions for Data Matrix and QR Code .. 20
 6.1.2 Quiet Zones for Data Matrix or QR Code .. 21
 6.1.3 Code Configuration for Data Matrix and QR Code ... 21
 6.1.4 Error Correction Levels .. 22
 6.1.5 Reflectivity and Contrast for Data Matrix and QR Code .. 22
 6.1.6 Quality Control Requirements .. 23
 6.1.7 Data Format for Data Matrix and QR Code ... 23
 6.1.8 Data Length for Data Matrix and QR Code ... 25
 6.1.9 Human Translation for Data Matrix and QR Code .. 27
 6.1.10 Symbol Layout for Data Matrix and QR Code ... 27
6.1.11 Code Densities and Dimensions for Data Matrix and QR Code .. 20
6.1.12 Quiet Zones for Data Matrix or QR Code .. 21
6.1.13 Code Configuration for Data Matrix and QR Code ... 21
6.1.14 Error Correction Levels .. 22
6.1.15 Reflectivity and Contrast for Data Matrix and QR Code .. 22
6.1.16 Quality Control Requirements .. 23
6.1.17 Data Format for Data Matrix and QR Code ... 23
6.1.18 Data Length for Data Matrix and QR Code ... 25
6.1.19 Human Translation for Data Matrix and QR Code .. 27
6.1.20 Symbol Layout for Data Matrix and QR Code ... 27
7.0 REFERENCES ... 30
APPENDIX A. TYPICAL DATA IDENTIFIERS ... 31
ABOUT AIAG .. 33
MAINTENANCE REQUEST .. 34
FIGURES

Figure 1. Code 39 Symbols Formatted Horizontally ... 18
Figure 2. Code 39 Symbols Formatted Vertically ... 18
Figure 3. Code 128 Symbols Formatted Horizontally .. 19
Figure 4. Code 128 Symbols Formatted Vertically ... 19
Figure 5. Rectangular And Square Data Matrix Symbols.. 21
Figure 6. Example of a Part with a Data Matrix Symbol.. 28
Figure 7. Example of Data Matrix Subpack or Unit Pack Identification and Tracking Symbol 28
Figure 8. Example of a Part with a QR Code Symbol .. 29
Figure 9. Example of QR Code Subpack or Unit Pack Identification and Tracking Marking Symbol..... 29

TABLES

Table 1. Restricted Length Data Fields.. 11
Table 2. Example of Data Formats for Typical Code 39 and Code 128 Symbols 15
Table 3. Marking Space Required for Given Number of Characters – Code 39 16
Table 4. Marking Space Required for Given Number of Characters – Code 128 17
Table 5. 2D Symbol Size Classifications by Element and Symbol Dimensions 20
Table 6. Rectangular Data Matrix ECC 200 Symbol Attributes... 21
Table 7. Data Matrix and QR Code Print Quality .. 23
Table 8. Example Data Format for Data Matrix or QR Code .. 24
Table 9. Macro Functions for Data Matrix .. 25
Table 10. Maximum Characters for Given Symbol Sizes for Data Matrix ECC 100 and ECC 200 25
1.0 INTRODUCTION

This Automotive Industry Action Group (AIAG) B-4 Standard (2nd revision) outlines the symbologies recommended for automotive part identification and tracking. This Standard recommends the use of the linear symbologies, Code 39 or Code 128, or the 2D symbologies, Data Matrix or QR Code. It is not the intent of this document to cause the obsolescence of existing systems.

One of the criteria used when making the decision to recommend more than one symbology was the availability of existing auto-discriminating equipment to read multiple symbologies.

The Automatic Identification Data Collection (AIDC) Work Group also determined that the most effort is incurred in the production, not in the scanning of the symbol. The complexity and level of knowledge required to scan a symbol is minimal compared to the level of complexity and knowledge necessary to produce a high quality mark.

Therefore, to decrease cost, improve quality, and reduce the confusion factor in the total system, it was decided that the Supplier, and not the Customer, SHALL make the decision of which symbology to use and inform the Customer of that choice.

Scope

This standard defines the minimum requirements for marking or labeling individual parts, unit packs, subpacks, kits, and assemblies/subassemblies that are distributed outside the originating location. These specifications provide maximum flexibility for symbol size, location, and information included in the symbol.

Intended applications include, but are not limited to, systems that automate the control of individual parts and unit packs. Such applications include:

- production operations
- product testing
- assembly process verification
- tool crib control
- inventory control
- distribution/receipt of parts
- maintenance, repair, and operating (MRO) supplies.

This standard does not define the label dimensions, marking areas, marking methods, or the location of the symbol(s) on the individual part or unit pack. Before implementation, suppliers SHOULD review and obtain approval of these details from their customers.