Calculation of the Fan Energy Index

An American National Standard
Approved by ANSI on January 24, 2018
ANSI/AMCA Standard 208-18

Calculation of the Fan Energy Index

Air Movement and Control Association International
30 West University Drive
Arlington Heights, Illinois
60004
AMCA Publications

Authority AMCA Standard 208-17 was adopted by the membership of the Air Movement and Control Association International Inc. on November 22, 2017. It was approved as an American National Standard on January 24, 2018

Copyright © 2018 by the Air Movement and Control Association International Inc.

All rights reserved. Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the executive director, Air Movement and Control Association International Inc. at 30 West University Drive, Arlington Heights, IL 60004-1893 U.S.

Objections The Air Movement and Control Association (AMCA) International Inc. will consider and take action upon all written complaints regarding its standards, certification programs or interpretations thereof. For information on procedures for submitting and handling complaints, write to

AMCA International
30 West University Drive
Arlington Heights, IL 60004-1893 U.S.A.

European AMCA
Avenue des Arts, numéro 46
à Bruxelles (1000 Bruxelles)

Asia AMCA Sdn Bhd
No. 7, Jalan SiLC 1/6,
Kawasan Perindustrian SiLC Nusajaya,
Mukim Jelutong, 79200 Nusajaya, Johor
Malaysia

Disclaimer AMCA uses its best efforts to produce publications for the benefit of the industry and the public in light of available information and accepted industry practices. However, AMCA does not guarantee, certify or assure the safety or performance of any products, components or systems tested, designed, installed or operated in accordance with AMCA publications or that any tests conducted under its publications will be non-hazardous or free from risk.
Review Committee

Tim Mathson (Chair) Greenheck Fan
John Bade Johnson Controls
Joanna Mauer Appliance Standards Awareness Project
Sarah Widder Pacific Northwest National Lab
Jason Meinke Phillips and Temro Industries
Kai Aschenbach Ziehl-Abegg
Justin Lim Northern Blower Inc.
Z. Patrick Chinoda Revcor, Inc.
Fernando A. Ruiz Equipos Electromecanicos, S.A. de C.V.
Rae Jane Araujo Howden American Fan
Adam Sterne Acme Engineering & Manufacturing Corporation
Trinity Persful Clarage
Franco Cincotti Comefri USA
Lee Buddrus Acme Engineering & Manufacturing Corporation
Jonathan Hollist MacroAir
Madan Baral Revcor Inc.
Rad Ganesh Twin City Fan
John Fox Air King Ventilation Products
Bob Valbracht Loren Cook Company
Venkatesvaran Somasundaram Royal Court Affairs
Mike Wolf Greenheck Fan
Ola Wettergren Systemair, Inc.
Sham Morten Gabr Multi Wing
Kim G. Osborn Nortek Air Solutions
Michael Patton Branford Haoll Career Institute
Sekar Chinnaiyan Saipem
Joshua Lynch S&P USA
Dustin Meredith Trane
Devon Washington Consumers Energy
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Bublitz</td>
<td>The New York Blower Company</td>
</tr>
<tr>
<td>Andrew Casey</td>
<td>Lasko Products</td>
</tr>
<tr>
<td>Richard Peppin</td>
<td>RION Co, Ltd</td>
</tr>
<tr>
<td>Armin Hauer</td>
<td>ebm-papst Inc.</td>
</tr>
<tr>
<td>Steve Dikeman</td>
<td>AcoustiFLO</td>
</tr>
<tr>
<td>Neal Boyd</td>
<td>Norther Blower</td>
</tr>
<tr>
<td>Christian Taber</td>
<td>Big Ass Fans</td>
</tr>
<tr>
<td>Aly Mohammed</td>
<td>James Cubitt & Partners Engineering Consultancy</td>
</tr>
<tr>
<td>Mansoor Bhavnagarwala</td>
<td>H&H Consulting</td>
</tr>
<tr>
<td>Ahmed Mohamed Abdel</td>
<td>Tiba Engineering Industries</td>
</tr>
<tr>
<td>Shahul Hameed</td>
<td>Voltas</td>
</tr>
<tr>
<td>Vasanthi Iyer</td>
<td>Lasko Products</td>
</tr>
<tr>
<td>Manoj Khati</td>
<td>Anshan Fan Group Co., Ltd</td>
</tr>
<tr>
<td>Logan Mikesell</td>
<td>Vostermans Ventilation, Inc</td>
</tr>
<tr>
<td>PS Nishar</td>
<td>Etisalat Facilities Management</td>
</tr>
<tr>
<td>Dr. R Rajasekar</td>
<td>Spruce Airwin Mech Engg PVT LTD</td>
</tr>
<tr>
<td>Gary Shamshoian</td>
<td>Best Technologies/HVAC Manufacturing, Inc.</td>
</tr>
<tr>
<td>Efe Unal</td>
<td>Aironn Ventilation Group</td>
</tr>
<tr>
<td>David Mayer</td>
<td>Greenheck Fan</td>
</tr>
<tr>
<td>Alexander Han</td>
<td>Jangho Group Co. Ltd.</td>
</tr>
<tr>
<td>Mike Brendel</td>
<td>Lau Fan</td>
</tr>
<tr>
<td>Matt Raymond</td>
<td>New York Blower</td>
</tr>
<tr>
<td>Alejandro Galdamez</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>Louis Starr</td>
<td>NEEA</td>
</tr>
<tr>
<td>Bryan Boyce</td>
<td>Energy Solutions</td>
</tr>
<tr>
<td>Reiner Kelch</td>
<td>System Air GmbH</td>
</tr>
<tr>
<td>Samuel Brugnaroto</td>
<td>GSI Brazil</td>
</tr>
<tr>
<td>David Johnson</td>
<td>Berner International LLC</td>
</tr>
<tr>
<td>Aron Reid</td>
<td>New York Blower</td>
</tr>
</tbody>
</table>
Calculation of the Fan Energy Index

1. Purpose and Scope

This standard defines the calculation method for the fan energy index (FEI), which is an energy efficiency metric for fans inclusive of motors and drives. This metric provides a standardized and consistent basis to compare fan energy performance across fan types and sizes at a given fan duty point.

Fan specifiers can use FEI to understand and communicate the fan efficiency design intent. Legislative or regulatory bodies can use FEI to define the energy efficiency requirements of fans.

The scope includes all fan and motor sizes and all applications, including fans with fan air performance based on tests in accordance with one of the following fan test standards: ANSI/AMCA Standard 210, ANSI/AMCA Standard 230, ANSI/AMCA Standard 250, ANSI/AMCA Standard 260, ISO 5801, or ISO 13350. All other fans are excluded (including air curtain units that are tested in accordance with ANSI/AMCA Standard 220).

2. Normative References

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

1. ANSI/AMCA Standard 99-16
 Standards Handbook
2. ANSI/AMCA Standard 207-17
 Fan System Efficiency and Fan System Input Power Calculation
3. ANSI/AMCA Standard 210-16/ASHRAE Standard 51-16
 Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating
4. AMCA Publication 211
 Certified Ratings Program Product Rating Manual for Fan Air Performance
5. ANSI/AMCA Standard 230-15
 Laboratory Methods of Testing Air Circulating Fans for Rating and Certification
6. ANSI/AMCA Standard 250-12
 Laboratory Methods of Testing Jet Tunnel Fans for Performance
7. ANSI/AMCA Standard 260-13
 Laboratory Methods of Testing Induced Flow Fans for Rating
8. IEC 60034-2-1 Ed. 2.0 b:2014
 Rotating electrical machines—Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles)
9. IEC 60034-30-1 Ed. 1.0 (2014-03)
 Rotating electrical machines—Part 30-1: Efficiency classes of line operated AC motors (IE code)
10. IEEE 112-2004
 IEEE Standard Test Procedure for Polyphase Induction Motors and Generators
11. IEEE 114-2010
 IEEE Standard Test Procedure for Single-Phase Induction Motors
 Fans—Performance testing using standardized airways
 Fans—Performance testing of jet fans