ANSI/AMCA
Standard 210-16
ASHRAE
Standard 51-16

Laboratory Methods of Testing
Fans for Certified Aerodynamic Performance Rating

Air Movement and Control Association International
AMCA Corporate Headquarters
30 W. University Drive, Arlington Heights, IL 60004-1893, USA
communications@amca.org · Ph: +1-847-394-0150 · www.amca.org
© 2016 AMCA International and ASHRAE

This is a preview of "ANSI/AMCA 210-16". Click here to purchase the full version from the ANSI store.
ANSI/AMCA Standard 210-16
ANSI/ASHRAE Standard 51-16

Laboratory Methods of Testing
Fans for Certified Aerodynamic Performance Rating

Air Movement and Control Association International
30 W. University Drive
Arlington Heights, Illinois
60004

American Society of Heating, Refrigerating and Air Conditioning Engineers
1791 Tullie Circle, NE
Atlanta, GA
30329-2305

This is a preview of "ANSI/AMCA 210-16". Click here to purchase the full version from the ANSI store.
Authority

AMCA Standard 210-16 was adopted by the membership of the Air Movement and Control Association International Inc. on July 20, 2016 and by ASHRAE on June 29, 2016. It was approved by the American National Standards Institute on August 26, 2016.

Copyright

© 2016 by Air Movement and Control Association International Inc.

All rights reserved. Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the executive director, Air Movement and Control Association International Inc. at 30 West University Drive, Arlington Heights, IL 60004-1893 U.S.

Objections

Air Movement and Control Association International Inc. will consider and take action upon all written complaints regarding its standards, certification programs or interpretations thereof. For information on procedures for submitting and handling complaints, write to

Air Movement and Control Association International
30 West University Drive
Arlington Heights, IL 60004-1893 U.S.A.
AMCA International Incorporated

European AMCA
Avenue des Arts, numéro 46
à Bruxelles (1000 Bruxelles)

Asia AMCA Sdn Bhd
No. 7, Jalan SiLC 1/6,
Kawasan Perindustrian SiLC Nusajaya,
Mukim Jelutong, 79200 Nusajaya, Johor
Malaysia

Disclaimer

AMCA uses its best efforts to produce publications for the benefit of the industry and the public in light of available information and accepted industry practices. However, AMCA does not guarantee, certify or assure the safety or performance of any products, components or systems tested, designed, installed or operated in accordance with AMCA publications or that any tests conducted under its publications will be non-hazardous or free from risk.
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Mathson, Committee Chair</td>
<td>Greenheck</td>
</tr>
<tr>
<td>John Cermak, PhD</td>
<td>Acme Engineering</td>
</tr>
<tr>
<td>David Johnson</td>
<td>Berner International Corp.</td>
</tr>
<tr>
<td>Brian Merritt</td>
<td>Climatic Testing Systems Inc.</td>
</tr>
<tr>
<td>Franco Cincotti</td>
<td>Comefri USA Inc.</td>
</tr>
<tr>
<td>Swee Hock Lawrence Ang</td>
<td>DongGuan Wolter Chemco Ventilation Ltd</td>
</tr>
<tr>
<td>Armin Hauer</td>
<td>ebm-papst Inc.</td>
</tr>
<tr>
<td>Fernando A. Ruiz C.</td>
<td>Equipos Electromecanicos, S.A. de C.V.</td>
</tr>
<tr>
<td>Mohamed Farag</td>
<td>Egyptian Swedish Air Conditioning Co. S.A.E.</td>
</tr>
<tr>
<td>Kim Osborn</td>
<td>Nortek Air Solutions</td>
</tr>
<tr>
<td>Dr. John Murphy</td>
<td>Jogram Inc.</td>
</tr>
<tr>
<td>Dan Hake</td>
<td>Lau Industries Inc.</td>
</tr>
<tr>
<td>Charles Gans</td>
<td>LSB Climate Solutions</td>
</tr>
<tr>
<td>Sham Morten Gabr</td>
<td>Multi-Wing</td>
</tr>
<tr>
<td>Z. Patrick Chinoda</td>
<td>Revcor, Inc.</td>
</tr>
<tr>
<td>Edward Hucko</td>
<td>Robinson Fans Inc.</td>
</tr>
<tr>
<td>David Ortiz Gomez</td>
<td>Soler & Palau, S.A. de C.V.</td>
</tr>
<tr>
<td>Rad Ganesh</td>
<td>Twin City Fan Companies Ltd.</td>
</tr>
<tr>
<td>Paul W. Okeley</td>
<td>The New York Blower Company</td>
</tr>
<tr>
<td>Charles W. Coward, Jr.</td>
<td>Waddell Inc.</td>
</tr>
<tr>
<td>Yong Ning Chen</td>
<td>Zhejiang Yilida Ventilator Co. Ltd.</td>
</tr>
<tr>
<td>Roberto Arias Alvarez</td>
<td>Zitron, S.A.</td>
</tr>
<tr>
<td>Mark Stevens</td>
<td>AMCA Staff</td>
</tr>
<tr>
<td>Tim Orris</td>
<td>AMCA Staff</td>
</tr>
<tr>
<td>Related Publications</td>
<td>AMCA Publication 211</td>
</tr>
</tbody>
</table>
Contents

1. Purpose and Scope ... 1

2. Normative References .. 1

3. Definitions/Units of Measure/Symbols 1
 3.1 Definitions .. 1
 3.2 Units of measure .. 6
 3.3 Symbols and subscripts ... 7

4. Instruments and Methods of Measurement 7
 4.1 Accuracy .. 7
 4.2 Pressure ... 7
 4.3 Airflow rate ... 9
 4.4 Fan input power .. 10
 4.5 Rotational speed .. 11
 4.6 Air density ... 11

5. Test Setups and Equipment .. 11
 5.1 Setup ... 11
 5.2 Duct ... 12
 5.3 Chamber .. 13
 5.4 Variable air supply and exhaust systems 13

6. Observations and Conduct of Test .. 14
 6.1 General test requirements .. 14

7. Calculations ... 15
 7.1 Calibration correction .. 15
 7.2 Density and viscosity of air .. 15
 7.3 Fan airflow rate at test conditions 16
 7.4 Fan velocity pressure at test conditions 17
 7.5 Fan total pressure at test conditions 18
 7.6 Fan static pressure at test conditions 20
 7.7 Fan input power at test conditions 20
 7.8 Fan efficiency ... 20
 7.9 Conversion of results to other rotational speeds and air densities ... 21

8. Report and Results of Test .. 22
 8.1 Report .. 22
 8.2 Performance graphical representation of test results 22
Laboratory Methods of Testing
Fans for Certified Aerodynamic Performance Rating

1. Purpose and Scope

This standard establishes uniform test methods for a laboratory test of a fan or other air moving device to determine its aerodynamic performance in terms of airflow rate, pressure developed, power consumption, air density, speed of rotation and efficiency for rating or guarantee purposes.

This standard applies to a fan or other air moving device when air is used as the test gas, with the following exceptions:

(a) air circulating fans (ceiling fans, desk fans);
(b) positive pressure ventilators;
(c) compressors with interstage cooling;
(d) positive displacement machines; and
(e) test procedures to be used for design, production or field testing.

2. Normative References

The following standards contain provisions that, through specific reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below.

3. Definitions/Units of Measure/Symbols

3.1 Definitions

3.1.1 Fan

A device that uses a power-driven rotating impeller to move air or gas (see note below). The internal energy increase imparted by a fan to air is limited to 25 kJ/kg (10.75 Btu/lbm). This limit is approximately equivalent to a pressure of 30 kPa (120 in. wg) (AMCA 99-0066).

Note: for the purpose of this standard, the term "air" is used in the sense of "gaseous fluid."

3.1.2 Fan inlet and outlet boundaries

The interfaces between a fan and the remainder of the air system; the respective planes perpendicular to an airstream entering or leaving a fan.

Various appurtenances (inlet boxes, inlet vanes, inlet cones, silencers, screens, rain hoods, dampers, discharge cones, evases, etc.), may be included as part of a fan between the inlet and outlet boundaries.

3.1.3 Fan input power boundary

The interface between a fan and its drive.

When mechanical input power is reported, it is the interface between a fan and its drive, which in this context is either a dynamometer or calibrated motor. When electrical input power is reported, it is the interface between mains and the drive.

3.1.4 Driven fan

A fan equipped with a drive.

3.1.5 Drive

Components used to power the fan, such as a motor, motor control and transmission. Not all of these components are required to constitute a drive. A calibrated motor used to measure fan input power is generally not considered part of the drive.

3.1.6 Transmission

A system that transmits mechanical power from the motor to the fan shaft. Examples of transmissions are belts/sheaves, couplings and gears.

3.1.7 Fan outlet area

The gross inside area measured in the planes of the outlet openings.

3.1.8 Fan inlet area

The gross inside area measured in the planes of the inlet connections. For converging inlets without connection elements, the inlet area shall be considered to be that where a plane perpendicular to the airstream first meets the mouth of the inlet bell or inlet cone.

3.1.9 Dry-bulb temperature

Air temperature measured by a temperature-sensing device without modification to compensate for the effect of humidity (AMCA 99-0066).

3.1.10 Wet-bulb temperature

The air temperature measured by a temperature sensor