ANSI/AMCA Standard 300-14

Reverberant Room Method for Sound Testing of Fans

An American National Standard
Approved by ANSI on August 14, 2014

The Air Movement and Control Association International Inc. is a not-for-profit international association of the world’s manufacturers of related air system equipment, primarily but not limited to fans, louvers, dampers, air curtains, airflow measurement stations, acoustic attenuators and other air system components for the industrial, commercial and residential markets.
Authority

AMCA Standard 300-14 was adopted by the membership of the Air Movement and Control Association International Inc. on August 21, 2014. It was approved by the American National Standards Institute on August 14, 2014.

Copyright

© 2005 by Air Movement and Control Association International Inc.

All rights reserved. Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the executive director, Air Movement and Control Association International Inc. at 30 West University Drive, Arlington Heights, IL 60004-1893 U.S.A.

Objections

Air Movement and Control Association International Inc. will consider and decide all written complaints regarding its standards, certification programs, or interpretations thereof. For information on procedures for submitting and handling complaints, write to:

Air Movement and Control Association International
30 West University Drive
Arlington Heights, IL 60004-1893 U.S.A.

European AMCA
Avenue des Arts, numéro 46
à Bruxelles (1000 Bruxelles)

Asia AMCA Sdn Bhd
No. 7, Jalan SiLC 1/6,
Kawasan Perindustrian SiLC Nusajaya,
Mukim Jelutong, 79200 Nusajaya, Johor
Malaysia

Disclaimer

AMCA uses its best efforts to produce standards for the benefit of the industry and the public in light of available information and accepted industry practices. However, AMCA does not guarantee, certify or assure the safety or performance of any products, components or systems tested, designed, installed or operated in accordance with AMCA standards or that any tests conducted under its standards will be non-hazardous or free from risk.
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Johnson</td>
<td>Berner International Corporation</td>
</tr>
<tr>
<td>John Cermak</td>
<td>Acme Engineering & Manufacturing Corporation</td>
</tr>
<tr>
<td>Marcel Kamutzki</td>
<td>Daltec Canadian Buffalo Manufacturing Ltd.</td>
</tr>
<tr>
<td>Alex Zhang</td>
<td>DongGuan Wolter Chemco Ventillation Ltd.</td>
</tr>
<tr>
<td>Scott Kurszewski</td>
<td>Greenheck Fan Corporation</td>
</tr>
<tr>
<td>Tim Kuski</td>
<td>Greenheck Fan Corporation</td>
</tr>
<tr>
<td>Manoj Khati</td>
<td>Greenheck Fan Corporation, India</td>
</tr>
<tr>
<td>Kim Osborn</td>
<td>Governair LLC</td>
</tr>
<tr>
<td>David Gaskin</td>
<td>Howden North America Inc.</td>
</tr>
<tr>
<td>Phillip Santolucito</td>
<td>MacroAir Technologies</td>
</tr>
<tr>
<td>Dario Brivio</td>
<td>Nicotra Gebhardt Company Ltd.</td>
</tr>
<tr>
<td>Chris Papadimos</td>
<td>Papadimos Group</td>
</tr>
<tr>
<td>Charles Gans</td>
<td>Strobic Air Corporation</td>
</tr>
<tr>
<td>Scott Hausmann</td>
<td>The Trane Company</td>
</tr>
<tr>
<td>Matt Settergren</td>
<td>Twin City Fan Companies Ltd.</td>
</tr>
<tr>
<td>Roberto Arias</td>
<td>Zitron, S.A.</td>
</tr>
<tr>
<td>Tim Orris</td>
<td>AMCA Staff</td>
</tr>
</tbody>
</table>
Related AMCA Documents

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCA Publication 302</td>
<td>Application of Sone Loudness Ratings for Non-Ducted Air Moving Devices</td>
</tr>
<tr>
<td>AMCA Publication 303</td>
<td>Application of Sound Power Level Ratings for Fans</td>
</tr>
<tr>
<td>AMCA Publication 311</td>
<td>Certified Ratings Program — Product Rating Manual for Fan Sound Performance</td>
</tr>
</tbody>
</table>

Related Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/AMCA Standard 301</td>
<td>Methods for Calculating Fan Sound Ratings from Laboratory Test Data</td>
</tr>
<tr>
<td>ANSI/AMCA Standard 320</td>
<td>Laboratory Methods of Sound Testing of Fans Using Sound Intensity</td>
</tr>
</tbody>
</table>
Reverberant Room Method For Sound Testing of Fans

1. Purpose

This standard establishes a method of determining the sound power levels of a fan. It was originally developed in response to the need for a reliable and accurate method of determining the sound power levels of fan equipment.

2. Scope

This standard applies to fans of all types and sizes. It is limited to the determination of airborne sound emission for the specified setups. Vibration is not measured, nor is the sensitivity of airborne sound emission to vibration effects determined.

The size of a fan that can be tested in accordance with this standard is limited only by the practical aspects of the test setups. Dimensional limitations, test subject dimensions, and air performance will control the test room size, power and mounting requirements for the test subject.

The test setup requirements in this standard establish the laboratory conditions necessary for a successful test. Rarely will it be possible to meet these requirements in a field situation. This standard is not intended for field measurements.

3. Definitions/Units of Measure/Symbols

3.1 Definitions

3.1.1 Blade passage frequency (BPF)

The frequency of fan impeller blades passing a single fixed object, per the following formula:

\[BPF = \frac{\text{number of blades} \times \text{fan rotational speed, rev/min}}{60}, \text{in Hz.} \]

3.1.2 Chamber

An enclosure used to regulate airflow and absorb sound; it may also conform to air test chamber conditions given in ANSI/AMCA Standard 210 [1].

3.1.3 Decibel (dB)

A dimensionless unit of level in logarithmic terms for expressing the ratio of a power or power-like quantity to a similar reference quantity (see Sections 3.1.13 and 3.1.14).

3.1.4 Ducted fan

A fan having a duct connected to either its inlet, its outlet or to both.

3.1.5 End reflection

A phenomenon that occurs whenever sound is transmitted across an abrupt change in area, such as at the end of a duct in a room. When end reflection occurs, some of the sound entering the room is reflected back into the duct and does not escape into the room.

3.1.6 Frequency

The number of times in one second that a periodic function repeats itself.

3.1.7 Informative

A term that indicates that the referenced material is provided as advice to the reader but does not constitute a mandatory requirement.

3.1.8 Non-ducted fan

A fan without ducts connected to its inlet and outlet.

3.1.9 Normative

A term that indicates that the referenced material, if applied, constitutes a mandatory requirement.

3.1.10 Octave band

The interval between any two frequencies having a ratio of two. Fan sound power levels are reported in eight standardized octave bands, shown in Table 2. Fan sound power levels may also be reported in one-third octave bands, also shown in Table 2.

3.1.11 Reverberant room

An enclosure meeting the requirements of Annex A or Annex A and B.

3.1.12 Shall and should

The word "shall" is to be understood as mandatory; the word "should" is to be understood as advisory.

3.1.13 Sound power level

Expressed in decibels (dB), the value of 10 times the logarithm (base 10) of the ratio of the sound power \(W \) to the reference sound power \(W_{\text{ref}} \) according to:

\[L_W, \text{in dB} = 10 \log_{10} \left(\frac{W}{W_{\text{ref}}} \right) \quad \text{Eq. 3.2-1} \]

3.1.14 Sound pressure level

Expressed in decibels (dB), the value of 20 times the logarithm (base 10) of the ratio of the sound pressure \(p \) to the reference sound pressure \(p_{\text{ref}} \) according to:

\[L_p, \text{in dB} = 20 \log_{10} \left(\frac{p}{p_{\text{ref}}} \right) \quad \text{Eq. 3.2-2} \]