AMCA Publication 203-90 (R2011) Field Performance Measurement of Fan Systems AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL, INC. The International Authority on Air System Components ## **AMCA PUBLICATION 203-90 (R2011)** # Field Performance Measurement of Fan Systems Association International, Inc. at 30 West University Drive, Arlington Heights, IL 60004-1893 U.S.A. #### **Forward** The original edition of Publication 203 was released in 1976. This, the second edition, updates much of the information that was presented. Annex K (estimating the power output of three phase motors) and Annex L (estimating belt drive losses) were rewritten and adjusted based on new information received from motor and drive manufacturers. Over four hundred belt drive loss tests were analyzed. New axial fan *System Effect Factors* were established based on a test project conducted and underwritten by AMCA. These factors were incorporated in their respective, applicable field test examples shown in Annex A. The intent of this publication is to provide information from which test procedures can be developed to meet the conditions and requirements encountered in specific field test situations. They include the proper procedure for determining various *System Effect Factors*. Numerous examples of actual field tests are presented in detail in Annex A. These examples provide sufficient guidance for the proper field testing of most fan system installations. #### **Authority** AMCA Publication 203 was approved by the Air Movement Control Association Membership in 1990. It was reaffirmed in 2007 and 2011. #### **AMCA 203 Review Committee** Robert H. Zaleski, Chairman Acme Engineering & Manufacturing Corp. Narsaiah Dasa TLT-Babcock, Inc. James L. Smith Aerovent, Inc. Jack E. Saunders Barry Blower/SnyderGeneral Corp. Erling Schmidt Novenco, Inc. Gerald P. Jolette AMCA Staff #### **Disclaimer** AMCA uses its best efforts to produce standards for the benefit of the industry and the public in light of available information and accepted industry practices. However, AMCA does not guarantee, certify or assure the safety or performance of any products, components or systems tested, designed, installed or operated in accordance with AMCA standards or that any tests conducted under its standards will be non-hazardous or free from risk. #### **Objections to AMCA Standards and Certifications Programs** Air Movement and Control Association International, Inc. will consider and decide all written complaints regarding its standards, certification programs, or interpretations thereof. For information on procedures for submitting and handling complaints, write to: Air Movement and Control Association International 30 West University Drive Arlington Heights, IL 60004-1893 U.S.A. or AMCA International, Incorporated c/o Federation of Environmental Trade Associations 2 Waltham Court, Milley Lane, Hare Hatch Reading, Berkshire RG10 9TH United Kingdom #### Related AMCA Standards and Publications #### Publication 200 AIR SYSTEMS System Pressure Losses Fan Performance Characteristics System Effect System Design Tolerances *Air Systems* is intended to provide basic information needed to design effective and energy efficient air systems. Discussion is limited to systems where there is a clear separation of the fan inlet and outlet and does not cover applications in which fans are used only to circulate air in an open space. #### Publication 201 FANS AND SYSTEMS Fan Testing and Rating The Fan "Laws" Air Systems Fan and System Interaction System Effect Factors Fans and Systems is aimed primarily at the designer of the air moving system and discusses the effect on inlet and outlet connections of the fan's performance. System Effect Factors, which must be included in the basic design calculations, are listed for various configurations. AMCA 201-02 and AMCA 203-90 are companion documents. #### Publication 202 TROUBLESHOOTING System Checklist Fan Manufacturer's Analysis Master Troubleshooting Appendices *Troubleshooting* is intended to help identify and correct problems with the performance and operation of the air moving system after installation. #### Publication 203 FIELD PERFORMANCE MEASUREMENTS OF FAN SYSTEMS Acceptance Tests Test Methods and Instruments Precautions Limitations and Expected Accuracies Calculations Field Performance Measurements of Fan Systems reviews the various problems of making field measurements and calculating the actual performance of the fan and system. AMCA 203-90 and AMCA 201-02 are companion documents. ## TABLE OF CONTENTS | 1. | Introduction | | | | |-----|--|--|--|--| | 2. | Scope1 | | | | | 3, | Types of Field Tests | | | | | 4. | Alternatives to Conducting Field Tests | | | | | 5. | System Effect Factors | | | | | 6. | Fan Performance | | | | | 7. | Referenced Planes | | | | | 8. | Symbols and Subscripts | | | | | 9. | Fan Flow Rate | | | | | | 9.1 General | | | | | | 9.2 Velocity measuring instruments | | | | | | 9.3 Location of traverse plane | | | | | | 9.4 The traverse | | | | | | 9.5 Flow rate calculations | | | | | | 9.6 Accuracy | | | | | 10. | Static Pressure | | | | | | 10.1 General | | | | | | 10.2 Pressure measuring instruments | | | | | | 10.3 Static pressure measurements | | | | | | 10.4 Static pressure calculations | | | | | | 10.5 Accuracy | | | | | 11. | Fan Power Input | | | | | | 11.1 General | | | | | | 11.2 Power measurement methods | | | | | | 11.3 Power measuring instruments | | | | | | 11.4 Power transmission losses | | | | | | 11.5 A | ccuracy | |---------|---------|------------------------------------| | 12. | Fan S | peed | | | 12.1 S | peed measuring instruments14 | | | 12.2 S | peed measurements14 | | 13. | Densi | ties14 | | | 13.1 Lo | ocations of density determinations | | | 13.2 D | ata required at each location | | | 13.3 A | dditional data14 | | | 13.4 D | ensity values14 | | | 13.5 Te | emperatures | | | 13.6 B | arometric pressure | | | 13.7 A | ccuracy | | 14. | Conve | ersion Calculations | | 15. | Test P | reparation | | 16. | Preca | utions | | 17. | Туріса | Il Fan-System Installations | | | 17.1 F | ree inlet, free outlet fans | | | 17.2 F | ree inlet, ducted outlet fans19 | | | 17.3 D | ucted inlet, ducted outlet fans19 | | | 17.4 D | ucted inlet, free outlet fans19 | | | 17.5 A | ir handling units | | Ann | ex A | Field Test Examples | | Ann | ex B | Pitot-Static Tubes | | Annex C | | Double Reverse Tube | | Annex D | | Pitot-Static Tube Holder | | Annex E | | Static Pressure Tap | | Annex F | | Pitot-Static Tube Connections | | Ann | nex G | Manometer Data | | Annex H | | Distribution of Traverse Points | ### This is a preview of "AMCA 203-90 (R2011)". Click here to purchase the full version from the ANSI store. | Annex J | Instrumentation Characteristics | 06 | |---------|--|----| | Annex K | Phase Current Method for Estimating the Power Output of Three Phase Fan Motors | 08 | | Annex L | Estimated Belt Drive Loss | 10 | | Annex M | Density Determinations | 12 | | Annex N | Density Charts and Tables | 17 | | Annex P | Diffusion at Fan Outlets | 25 | | Annex R | Diffusion at Fan Outlets | 26 | | Annex S | Typical Format for Field Test Data1 | 30 | | Annex T | Uncertainties Analysis | 31 | AMCA INTERNATIONAL, INC. AMCA 203-90 (R2011) ### Field Performance Measurement of Fan Systems #### 1. Introduction Performance ratings of fans are developed from laboratory tests made according to specified procedures on standardized test setups. In North America, the standard is ANSI/AMCA Standard 210 / ANSI/ASHRAE 51 Laboratory Methods of Testing Fans for Rating. In actual systems in the field, very few fans are installed in conditions reproducing those specified in the laboratory standard. This means that, in assessing the performance of the installed fansystem, consideration must be given to the effect on the fan's performance of the system connections, including elbows, obstructions in the path of the airflow, sudden changes of area, etc. The effects of system conditions on fan performance is discussed in Section 5, and more completely in AMCA Publication 201, Fans and Systems. A major problem of testing in the field is the difficulty of finding suitable locations for making accurate measurements of flow rate and pressure. Sections 9.3 and 10.3 outline the requirements of suitable measurement sections. Because these problems and others will require special consideration on each installation, it is not practical to write one standard procedure for the measurement of the performance of all fan-systems in the field. This publication offers guidelines to making performance measurements in the field which are practical and flexible enough to be applied to a wide range of fan and system combinations. Because of the wide variety of fan types and systems encountered in the field, Annex A includes examples of a number of different field tests. In most cases, these examples are based on actual tests which have been conducted in the field. Before performing any field test, it is strongly recommended that the following AMCA publications be carefully reviewed: AMCA Publication 200 - Air Systems AMCA Publication 201 - Fans and Systems AMCA Publication 202 - Troubleshooting AMCA Standard 210 - Laboratory Methods of Testing Fans for Rating #### 2. Scope The recommendations and examples in this publication may be applied to all types of centrifugal, axial, and mixed flow fans in ducted or nonducted installations used for heating, ventilating, air conditioning, mechanical draft, industrial process, exhaust, conveying, drying, air cleaning, dust collection, etc. Although the word air is used when reference is made in the general sense to the medium being handled by the fan, gases other than air are included in the scope of this publication. Measurement of sound, vibration, and stress levels are not within the scope of this publication. #### 3. Types of Field Tests There are three general categories of field tests: - A) General Fan System Evaluation A measurement of the fan-system's performance to use as the basis of modification or adjustment of the system. - B) Acceptance Test A test specified in the sales agreement to verify that the fan is achieving the specified performance. - C) Proof of Performance Test A test in response to a complaint to demonstrate that the fan is meeting the specified performance requirement. As acceptance and proof of performance tests are related to contract provisions, they are usually subject to more stringent requirements and are usually more costly than a general evaluation test. In the case of large fans used in industrial applications and of mechanical draft fans used in the electrical power generation industry the performance of a field test may be part of the purchase agreement between the fan manufacturer and the customer. In addition to Publication 203, AMCA Standard 803 Performance Test Standard-Power Plant and Industrial Fans defines the conditions which must be met to achieve higher accuracy of measurement. In new installations of this type, it is desirable to include a suitable measuring section in the design. Agreement must be reached on the test method to be used prior to performance of the test.