ANSI/AMCA Standard 230-15

Laboratory Methods of Testing Air Circulating Fans for Rating and Certification

An American National Standard
Approved by ANSI on October 16, 2015
Laboratory Methods of Testing
Air Circulating Fans for Rating and Certification

Air Movement and Control Association International
30 W. University Drive
Arlington Heights, Illinois 60004
Authority

AMCA Standard 230-15 was adopted by the membership of the Air Movement and Control Association International Inc. on September 4, 2015, and approved by the American National Standards Institute on October 16, 2015.

Copyright

© 2006 by Air Movement and Control Association International Inc.

All rights reserved. Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the executive director, Air Movement and Control Association International Inc. at 30 West University Drive, Arlington Heights, IL 60004-1893 U.S.

Objections

Air Movement and Control Association International Inc. will consider and take action upon all written complaints regarding its standards, certification programs or interpretations thereof. For information on procedures for submitting and handling complaints, write to

Air Movement and Control Association International
30 West University Drive
Arlington Heights, IL 60004-1893 U.S.A.
AMCA International Incorporated

European AMCA
Avenue des Arts, numéro 46
à Bruxelles (1000 Bruxelles)

Asia AMCA Sdn Bhd
No. 7, Jalan SiLC 1/6,
Kawasan Perindustrian SiLC Nusajaya,
Mukim Jelutong, 79200 Nusajaya, Johor
Malaysia

Disclaimer

AMCA uses its best efforts to produce publications for the benefit of the industry and the public in light of available information and accepted industry practices. However, AMCA does not guarantee, certify or assure the safety or performance of any products, components or systems tested, designed, installed or operated in accordance with AMCA publications or that any tests conducted under its publications will be non-hazardous or free from risk.
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Cermak</td>
<td>ACME Engineering and Manufacturing Corp.</td>
</tr>
<tr>
<td>John Fox</td>
<td>Air King Ventilation Products</td>
</tr>
<tr>
<td>Vasanthi Iyer</td>
<td>Air Movement Solution</td>
</tr>
<tr>
<td>Christian Avedon</td>
<td>Airius, LLC</td>
</tr>
<tr>
<td>Jay Fizer</td>
<td>Big Ass Solutions</td>
</tr>
<tr>
<td>Christian Taber</td>
<td>Big Ass Solutions</td>
</tr>
<tr>
<td>Armin Hauer</td>
<td>ebm-papst Inc.</td>
</tr>
<tr>
<td>Luis Carlos Mendes Dos Santos Nior</td>
<td>Equilibrio Balanceamentos Industriais Ltda</td>
</tr>
<tr>
<td>Fernando A. Ruiz C., P.E., M.A.</td>
<td>Equipos Electromecánicos, S.A. de C.V.</td>
</tr>
<tr>
<td>Justin Meyer</td>
<td>Hartzell Air Movement</td>
</tr>
<tr>
<td>Bill Walker</td>
<td>Hunter Fan Company</td>
</tr>
<tr>
<td>Tom Breeden</td>
<td>Hunter Fan Company</td>
</tr>
<tr>
<td>Terry Lyons</td>
<td>J&D Manufacturing</td>
</tr>
<tr>
<td>Jonathan Hollist</td>
<td>MacroAir</td>
</tr>
<tr>
<td>Michael Danielsson</td>
<td>MacroAir</td>
</tr>
<tr>
<td>Jesse Jensen</td>
<td>PennBarry</td>
</tr>
<tr>
<td>Edoardo Capello</td>
<td>Termotecnica Pericoli Srl</td>
</tr>
<tr>
<td>James Quinn</td>
<td>Triangle Engineering of Arkansas Inc.</td>
</tr>
<tr>
<td>Tim Orris</td>
<td>AMCA Staff</td>
</tr>
</tbody>
</table>
Related AMCA Documents

<table>
<thead>
<tr>
<th>Related Publications</th>
<th>AMCA Publication 11, Certified Ratings Program — Operating Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMCA Publication 211, Certified Ratings Program — Product Rating Manual for Fan Air Performance</td>
</tr>
<tr>
<td></td>
<td>AMCA Publication 311, Certified Ratings Program — Product Rating Manual for Fan Sound Performance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANSI/AMCA Standard 210, Laboratory Methods of Testing Fans for Aerodynamic Performance Rating</td>
</tr>
</tbody>
</table>
9. Calculations

9.1 Calibration correction

9.2 Ambient air density

9.3 Thrust

9.4 Airflow rate

9.5 Fan overall efficiency

9.6 Circulator fan efficacy

10. Report and Results of Test

Annex A Circulating Fans and Their Relationship to Airflow and Velocity (Informative)

Annex B References (Informative)
1. Purpose
The purpose of this standard is to establish uniform methods for laboratory testing of air circulating fans to determine performance (forward or reverse flow) in terms of airflow rate for rating, certification or guarantee purposes.

2. Scope
This standard shall be used as the basis for testing air circulating fan heads, ceiling fans, box fans, table fans, portable personnel coolers or other air circulating devices when air is used as the test gas. The diameter of the fan being tested shall be limited by the minimum dimensions as shown in the applicable test figures.

Blowers, exhausters, compressors, positive displacement machines and positive pressure ventilators are not within the scope of this standard.

The parties to a test for guarantee purposes shall agree on exceptions to this standard in writing prior to the test. However, only tests which do not violate any mandatory requirements of this standard shall be designated as tests conducted in accordance with this standard.

3. Units of Measurement

3.1 System of units
SI units (The International System of Units, Le Système International d'Unités) [1] are the primary units employed in this standard, with I-P units (inch-pound) given as the secondary reference. SI units are based on the fundamental values of the International Bureau of Weights and Measures [1], and I-P values are based on the values of the National Institute of Standards and Technology, which are in turn based on the values of the International Bureau.

3.2 Basic units
The SI unit of length is the meter (m) or the millimeter (mm); the I-P unit of length is the foot (ft) or the inch (in.). The SI unit of mass is the kilogram (kg); the I-P unit of mass is the pound mass (lbm). The unit of time is either the minute (min) or the second (s). The SI unit of temperature is either the Kelvin (K) or the degree Celsius (°C); the I-P unit of temperature is either the degree Fahrenheit (°F) or the degree Rankine (°R). The SI unit of force is the newton (N); the I-P unit of force is the pound force (lbf).

3.3 Velocity
The SI unit of velocity is the meter per second (m/s); the I-P unit of velocity is the foot per minute (fpm).

3.4 Thrust
The SI unit of thrust is the newton (N); the I-P unit is the pound force (lbf).

3.5 Pressure
The SI unit of pressure is the pascal (Pa). The I-P unit of pressure is either the inch water gauge (in. wg) or the inch mercury (in. Hg). Values in mm Hg or in in. Hg shall be used only for barometric pressure measurements.

The in. wg shall be based on a one-inch column of distilled water at 68 °F under standard gravity and a gas column balancing effect based on standard air. The in. Hg shall be based on a one-inch column of mercury at 32 °F under standard gravity in a vacuum. The mm Hg shall be based on a one-millimeter column of mercury at 0 °C under standard gravity in a vacuum.

3.6 Power
The unit of input power is the watt (W).

3.7 Speed
The unit of rotational speed is the revolution per minute (rpm).

3.8 Gas properties
The SI unit of density is the kilogram per cubic meter (kg/m³); the I-P unit of density is the pound mass per cubic foot (lbm/ft³). The SI unit of viscosity is the pascal-second, (Pa-s); the I-P unit of viscosity is the pound mass per foot-second (lbm/ft-s). The SI unit of gas constant is the joule per kilogram-kelvin (J/kg-K); the I-P unit of gas constant is the foot-pound force per pound-mass-degree Rankine (ft-lb/(lbm•°R)).

3.9 Dimensionless groups
Various dimensionless quantities appear in the text. Any consistent system of units may be employed to evaluate these quantities unless a numerical factor is included, in which case units must be as specified.

3.10 Physical constants
The SI value of standard gravitational acceleration shall be taken as 9.80665 m/s², which corresponds to mean sea level at 45° latitude; the I-P value of standard gravitational acceleration shall be taken as 32.174 ft/s², which corresponds to mean sea level at 45° latitude;