ANSI B11.0 – 2020

American National Standard

Safety of Machinery

ANSI-Accredited Standards Developer and Secretariat:

B11 Standards, Inc.
POB 690905
Houston, TX 77269, USA

APPROVED: 16 December 2019
by the American National Standards Institute
Board of Standards Review

COPYRIGHT PROTECTED DOCUMENT
Copyright © 2020 by B11 Standards, Inc.
All rights reserved. Printed in the United States of America
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of B11 Standards, Inc.
AMERICAN NATIONAL STANDARDS

By approving this American National Standard, the ANSI Board of Standards Review confirms that the requirements for due process, consensus, balance and openness have been met by B11 Standards, Inc., (the ANSI-accredited standards developing organization). American National Standards are developed through a consensus process. Consensus is established when substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward resolution. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While B11 Standards, Inc., administers the process and establishes procedures to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards or guidelines.

American National Standards are promulgated through ANSI for voluntary use; their existence does not in any respect preclude anyone, whether they have approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. However, users, distributors, regulatory bodies, certification agencies and others concerned may apply American National Standards as mandatory requirements in commerce and industry.

Neither B11 Standards, Inc. nor any of the organizations or individuals that assisted in authoring, developing, editing or distributing this standard (B11 Standards, Inc. and such organizations and individuals collectively referred to as the “Contributing Parties”) makes any warranty, either expressed or implied, as to the fitness of merchantability or accuracy of the information contained within this standard. The Contributing Parties disclaim and make no warranty that the information in this document will fulfill any of your particular purposes or needs. The Contributing Parties disclaim liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application or reliance on this document. The Contributing Parties do not undertake to guarantee the performance of any individual manufacturer or seller's products or services by virtue of this standard or guide, nor does it take any position with respect to the validity of any patent rights asserted in connection with the items which are mentioned in or are the subject of this document. The Contributing Parties disclaim liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

In publishing or making this document available, the Contributing Parties are not undertaking to render professional or other services for or on behalf of any person or entity, nor are the Contributing Parties undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment, or as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. In addition to conforming to the requirements of this standard, the responsible personnel need to also make an independent determination as to whether a machine, activity or condition complies with the applicable legal requirements in the relevant jurisdiction(s).

B11 Standards, Inc., has no power, nor does it undertake to police or enforce conformance to the requirements of this document. B11 Standards, Inc., does not certify, test or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of conformance to any health or safety-related information in this document shall not be attributable to B11 Standards, Inc., and is solely the responsibility of the certifier or maker of the statement. The American National Standards institute does not develop standards and will in no circumstances give an interpretation of an American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the Secretariat (B11 Standards, Inc.,).

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. You may contact the Secretariat for current status information on this, or other B11 standards.

Published by: B11 Standards, Inc., POB 690905, Houston, TX - USA
Copyright © 2020 by B11 Standards Inc.
All rights reserved. Printed in the United States of America

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
TABLE of CONTENTS

<table>
<thead>
<tr>
<th>FOREWORD</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>8</td>
</tr>
<tr>
<td>Objective</td>
<td>8</td>
</tr>
<tr>
<td>Harmonization</td>
<td>9</td>
</tr>
<tr>
<td>General</td>
<td>10</td>
</tr>
<tr>
<td>Context</td>
<td>11</td>
</tr>
<tr>
<td>Normative requirements</td>
<td>11</td>
</tr>
<tr>
<td>Effective Date</td>
<td>11</td>
</tr>
<tr>
<td>Development</td>
<td>11</td>
</tr>
</tbody>
</table>

INTRODUCTION .. 13

1 SCOPE .. 16

2 NORMATIVE REFERENCES .. 17

3 DEFINITIONS .. 18

4 RESPONSIBILITIES ... 29

4.1 General ... 29

4.2 Collaborative efforts ... 31

4.3 Responsibilities of the component supplier, machine supplier and the machine user .. 31

4.4 Responsibilities of the component user / machine supplier 31

4.4.1 Integration .. 31

4.4.2 Documentation .. 31

4.4.3 Engineering controls .. 31

4.5 Responsibilities of the machine user ... 32

4.6 Specifications for custom machinery .. 32

4.7 Design, construction and information for operation and maintenance 32

4.8 Installation, commissioning and start-up ... 32

4.9 Risk reduction measure(s) .. 33

4.10 Operation and maintenance .. 33

4.11 Training of user personnel ... 33

4.12 Cleaning .. 33

4.13 Operational working space ... 34

4.14 Existing (legacy) machinery ... 34

4.15 Decommissioning .. 35

4.16 Personnel responsibilities .. 35

5 LIFECYCLE REQUIREMENTS AND RESPONSIBILITIES .. 36

5.1 General ... 36

5.2 Supplier .. 36

5.3 User ... 36

5.4 Installation ... 36

5.5 Integrator / modifier / rebuilder .. 36

© 2020 B11 Standards, Inc.
6 THE RISK ASSESSMENT PROCESS .. 37
 6.1 General .. 37
 6.1.1 Qualified personnel ... 37
 6.1.2 Goal .. 37
 6.1.3 Fundamental steps of the risk assessment process ... 37
 6.2 Prepare for and set scope (limits) of the assessment .. 39
 6.3 Identify tasks and hazards .. 39
 6.3.1 Identify affected persons ... 39
 6.3.2 Identify tasks .. 40
 6.3.3 Identify hazards and hazardous situations ... 40
 6.3.4 Similar machines .. 41
 6.4 Assess initial risk ... 41
 6.4.1 Select a risk scoring system .. 41
 6.4.2 Assess risk .. 42
 6.4.3 Derive risk level ... 42
 6.5 Reduce risk ... 43
 6.5.1 Use the hazard control hierarchy .. 43
 6.5.2 Select feasible risk reduction measures ... 46
 6.5.3 Check for new hazards ... 47
 6.6 Assess residual risk ... 47
 6.7 Achieve acceptable risk .. 47
 6.8 Validate and verify risk reduction measures ... 48
 6.9 Document the process .. 48
 6.9.1 Content .. 48
 6.9.2 Document retention ... 49

7 GENERAL RISK REDUCTION REQUIREMENTS ... 50
 7.1 Access to machinery ... 50
 7.2 Control systems performing a safety function ... 50
 7.2.1 General ... 50
 7.2.2 Monitoring functions ... 51
 7.2.3 Stop functions .. 51
 7.2.4 Protective stop .. 51
 7.2.5 Reset .. 51
 7.3 Control systems design requirements ... 52
 7.3.1 Operator interaction .. 52
 7.3.2 Operator interface / controls ... 52
 7.3.3 Layout analysis (control zones) ... 52
 7.3.4 Span of control ... 53
 7.3.5 Energy sources ... 53
 7.3.6 Interruption of energy source ... 53
 7.3.7 Selection of operating modes ... 53
 7.3.8 Manual and special mode(s) ... 53
 7.3.9 Wireless control .. 54
 7.4 Material/part conveyance ... 54
 7.5 Electromagnetic compatibility (EMC) ... 54
 7.6 Electrical .. 54
 7.7 Emergency stop ... 54
 7.8 Control of hazardous energy (lockout / tagout / alternative methods) 54
7.9 Ergonomics / human factors ... 55
7.10 Engineering controls .. 55
 7.10.1 General .. 55
 7.10.2 Additional considerations .. 55
7.11 Handling of machines, component parts, tooling and materials 56
7.12 Hydraulic and pneumatic (including vacuum) systems 56
 7.12.1 General .. 56
 7.12.2 Safety shut-off and exhaust valve ... 56
 7.12.3 Pressure vessels ... 57
 7.12.4 Air valve mufflers ... 57
 7.12.5 Air preparation components .. 57
 7.12.6 Pressure intensification ... 57
 7.12.7 Hydraulic accumulators ... 57
 7.12.8 Actuators ... 57
7.13 Ladders and platforms .. 58
7.14 Large machines .. 58
7.15 Lasers .. 58
7.16 Lubrication ... 58
7.17 Machines and machinery systems .. 58
7.18 Mechanical power transmission ... 60
7.19 Modified atmospheres .. 60
7.20 Noise .. 60
7.21 Radiation ... 61
7.22 Sanitation and hygiene ... 61
7.23 Stability .. 61
7.24 Thermal systems .. 62
7.25 Visibility .. 62
7.26 Ventilation of airborne contaminants .. 62

8 INFORMATION FOR OPERATION AND MAINTENANCE OF MACHINERY 63
 8.1 General ... 63
 8.2 Manuals ... 63
 8.3 Safety signs and labels .. 63
 8.4 Nameplate ... 63
 8.5 Information for personal protective equipment (PPE) 63

9 SUPERVISION ... 63
10 TRAINING .. 64
 10.1 General ... 64
 10.2 Training elements ... 64
 10.2.1 General ... 64
 10.2.2 Training program(s) .. 65
 10.2.3 Trainer qualifications .. 65
 10.3 Operator training ... 66
 10.4 Maintenance personnel training .. 66
 10.5 Supervisor training ... 66
 10.6 Retraining ... 66
LIST of ANNEXES

ANNEX A — APPROACHES TO RISK REDUCTION ... 67
ANNEX B — TRANSFERRING INFORMATION ABOUT RESIDUAL RISK 71
ANNEX C — GUIDANCE FOR THE RISK ASSESSMENT PROCESS 72
ANNEX D — PARTIAL LIST OF MACHINERY HAZARDS 75
ANNEX E — ADDITIONAL INFORMATION ON ASSESSING RISK (RISK ESTIMATION) 79
ANNEX F — RISK ASSESSMENT MATRICES .. 85
ANNEX G — ADDITIONAL INFORMATION ON ACHIEVING ACCEPTABLE RISK 90
ANNEX H — SAMPLE RISK ASSESSMENT ... 92
ANNEX I — SAMPLE STATEMENT OF CONFORMITY 95
ANNEX J — LAYOUT ANALYSIS ... 96
ANNEX K — SPECIAL MODE ... 98
ANNEX L — USING ALTERNATIVE METHODS FOR CONTROLLING HAZARDOUS ENERGY 101
ANNEX M — INFORMATION FOR USE – MANUAL CONTENT OUTLINE 108
ANNEX N — GENERAL GUIDELINES FOR OPERATOR TRAINING 111
ANNEX O — STANDARDS VISUAL MAPPING ... 114
ANNEX P — TERMS FOR PERSONS AS USED IN B11 STANDARDS 118
ANNEX Q — ACHIEVING A SAFE CONDITION WITH REDUCED-ENERGY 119
ANNEX R — INFORMATIVE REFERENCES ... 129

LIST of FIGURES

Figure 1 — Illustration of relationship between ISO 12100 and ANSI B11.0 9
Figure 2 — Organization of the B11 Series of Documents ... 13
Figure 3 — How to use type-C standards .. 14
Figure 4 — Machinery and equipment lifecycle stages ... 29
Figure 5 — Example of Machinery Lifecycle Responsibilities 30
Figure 6 — The Risk Assessment Process .. 38
Figure 7 — Elements of Risk .. 41
Figure 8 — Two Stage Iterative Approach to the Hierarchy of Controls and Risk Reduction ... 67
Figure 9 — Illustration of the process of the supplier and user risk reduction efforts 69
Figure 10 — Layout Analysis Process ... 97
Figure 11 — Risk reduction for special mode ... 99
Figure 12 — ANSI standards applicable in the United States 115
Figure 13 — EN Norms (EU standards) applicable in the European Union 116
Figure 14 — International standards (ISO & IEC only; other international standards may apply) 117
Figure 15 — Terms for Persons used in the B11 series of standards 118
Figure 16 — Burn threshold when skin contacts smooth, hot, bare metal surface 125

LIST of TABLES

Table 1 — Requirements for new and existing machinery ... 35
Table 2 — Example Risk Scoring System .. 42
Table 3 — The Hazard Control Hierarchy ... 44
Table 4 --- Example of relations between Hazard, Safety Function and Risk Reduction 50
Table 5 --- Noise Source and Noise Reduction Methods (Informative) 60
Table 6 --- Potential Effects/Additional Characteristics of Risk Reduction Measures 70
Table 7 --- Machinery Hazards 75
Table 8 --- Estimation Injury Severity 80
Table 9 --- MIL-STD-882E Two-Factor Risk Scoring System [4x5] 85
Table 11 --- ANSI / RIA R15.06-1999 Risk Rating System (prior to safeguard selection) 86
Table 12 --- RIA TR R15.306-2015 Risk Level Decision Matrix 86
Table 13 --- RIA TR R15.306-2015 Injury Severity, Exposure, and Avoidance Categories 87
Table 14 --- ANSI / ASSP Z10 Risk Scoring Matrix 88
Table 15 --- SEMI S10-0815 Risk Ranking Table; Severity Groups 88
Table 16 --- SEMI S10-0815 Risk Ranking Table; Likelihood Groups 89
Table 17 --- SEMI S10-0815 Risk Ranking Matrix 89
Table 18 --- Sample Risk Assessment #1 92
Table 19 --- Sample Risk Assessment #2 93
Table 20 --- Sample Risk Assessment #3 94
Table 21 --- Manual Content 108
Table 22 --- Low/reduced speed values in ascending order with references 121
Table 23 --- Low/reduced force values in ascending order with references 123
Table 24 --- Low/reduced kinetic energy values in ascending order with references 124
Table 25 --- Low/reduced pressure values in ascending order with references 124
Table 26 --- Recommendations on performance of safety levels for reduced-energy operating modes 126
FOREWORD

(This Foreword is not part of the requirements of this ANSI B11.0 Standard on Safety of Machinery.)

Overview

This American National Standard was promulgated by the B11 Accredited Standards Committee as a voluntary consensus standard to establish safety requirements for machinery and machinery systems. This standard specifies general safety requirements for the design, construction, operation and maintenance (including installation, dismantling and transport) of machinery and machinery systems. This standard also applies to devices that are integral to these machines.

This standard was first published in 2008 as ANSI B11 General Safety Requirements. It was revised, re-designated and published as ANSI B11.0 in 2010. The standard was again revised and published in 2015; that third edition of this standard added responsibilities related to machinery components, clarified the relationship between the risk assessment for the machine and the design specification for control systems, provided additional information on documentation requirements, included new clauses on supervision and training, presented new annexes correlating machinery safety standards in the U.S. and EN/ISO, and generally clarified and simplified text in the standard. The current edition of this American National Standard on the Safety of Machinery (ANSI B11.0-2020) includes updates in the following areas:

- guidance on how to use ANSI B11.0 and type-C standards (Introduction);
- changes to terms used to improve precision of meaning (the Foreword and throughout);
- clarity of terms and definitions (clause 3);
- clarity on responsibilities for component suppliers, machine suppliers and machine users (4.3, 4.4 and 4.5);
- additional emphasis on the feasibility of risk reduction measures (4.9 and 6.5.2);
- improved guidance on how to address existing (legacy) equipment (4.14);
- additional guidance on prevention through design (PID) (6.5.1);
- additional guidance on achieving acceptable risk (6.7 and Annex G);
- additional guidance on validating and verifying risk reduction measures (6.8);
- new content on layout analysis for control zones (7.3.3 and Annex J);
- new content on span of control (7.3.4);
- new content for manual and special modes (7.3.8 and Annex K);
- new requirements for machinery systems (7.17);
- updates to injury and severity correlations (Annex E);
- new content related to how to use alternative methods for controlling hazardous energy (new Annex L);
- updated outline for instruction handbook/manual (Annex M);
- information on correlating various safety standards and on defining terms for affected persons (Annex O and P);
- removal of unnecessary or redundant content.

The B11 standards for machine safety were first approved beginning with safety requirements for power presses in 1922. Since that time, safety requirements for a variety of machine tools have been developed and continually updated and revised to become the series of B11 standards and technical reports on machinery safety. Maintaining these documents with consistent language proved to be a significant challenge.

The concepts and principles contained in this standard can be applied very broadly to a wide variety of systems and applications. Documented risk assessments were first introduced to the machine tool industry in 2000 with the publication of (ANSI) B11.TR3 – Risk Assessment and Risk Reduction – A Guide to Estimate, Evaluate and Reduce Risks Associated With Machine Tools; to the robot industry in 1999 with the publication of ANSI/RIA R15.06-Requirements for Industrial Robots and Robot Systems; and to the packaging machinery industry in 2006 with the publication of ANSI/PMMI B155.1-Safety Requirements for Packaging Machinery and Packaging-Related Converting Machinery. Since that time, the principles of the risk assessment process have been applied to many applications – including traffic control, consumer products, incident investigations and, of course, machinery. Interested readers are encouraged to apply these principles and concepts to other systems in addition to machinery as suits their needs.

Prevention Through Design or PTD is a recent term in the industry; the objectives of risk assessment, risk reduction and elimination of hazards as early as possible are integral and not new to this standard. The phrase "Prevention Through Design” is used within the standard, as are other equivalent terms such as "elimination by design," "design out," and "substitution" to thoroughly address risk assessment and applying it to the lifecycle and operations of the machine.
Objective
The objective of the B11 series of standards is to eliminate injuries to personnel from machinery or machinery systems by establishing requirements for the design, construction, reconstruction, modification, installation, set-up, operation and maintenance of machinery or machine systems. This standard should be used by suppliers and users, as well as by the appropriate authority having jurisdiction. Responsibilities have been assigned to the supplier (i.e., manufacturer, the reconstructor, and the modifier), the user, and the user personnel to implement this standard. This standard is not intended to replace good judgment and personal responsibility. Personnel skill, attitude, training and experience are safety factors that need to be considered by the user.

Applying risk reduction measures to machinery is complicated by the wide variety of operations and operating conditions, including, but not limited to the following: the variations in size, speed, and type of machinery used; the size, thickness, and kind of pieces to be worked; the required accuracy of the finished work; the skill of operators; the length of run; and the method of feeding, including part and scrap removal. Because of these varying factors in the operations and in the workplace, a wide variety of risk reduction measures has been covered in this standard as well as the machine-specific “base” (type-C) safety standards.

Harmonization
This standard has been harmonized with international (ISO) and European (EN) standards by the introduction of hazard identification and risk assessment as the principal method for analyzing hazards to personnel to achieve a level of acceptable risk. This standard integrates the requirements of ISO 12100 parts 1 and 2, and ISO 14121 (now combined into a single standard — ISO 12100:2010), as well as selected U.S. standards. In 2012, the U.S. executed an identical national adoption of ISO 12100:2010, re-designated as ANSI/ISO 12100-2012 IDT (the “IDT” in the official alpha-numeric ANSI designation means identical and unchanged from the ISO version).

ISO 12100 was used as one of the principle resource documents in developing ANSI B11.0. However, the technical requirements of ISO 12100 have not been updated since the early 1990s (the content of ISO 12100 parts 1 and 2, and ISO 14121 were editorially combined without technical changes to create ISO 12100 (2010)). In addition, ISO 12100 only applies to the suppliers of machinery and is unable to include any requirements for users of machinery. ISO 12100 also only applies to new machinery and excludes existing machinery. ANSI B11.0 differs from ISO 12100 in that it specifically includes requirements for both suppliers and end users of machinery. It also includes numerous requirements and informative guidance and other information related to the safety of machinery which goes beyond that which is contained in ISO 12100.

As a result, complying with the requirements of ISO 12100 will not assure compliance with the requirements of ANSI B11.0. Conversely, compliance with ANSI B11.0 will automatically result in compliance with the requirements of ISO 12100. Figure 1 is an illustration of the relationship between these two standards.

![Figure 1 — Illustration of relationship between ISO 12100 and ANSI B11.0](image-url)