American National Standard for Machines –

Safety Requirements for
Pipe, Tube, and Shape Bending Machines

Secretariat and Accredited Standards Developer:

B11 Standards, Inc.
POB 690905
Houston, TX 77269

Approved: 21 December 2001
Reaffirmed: 27 November 2012

American National Standards Institute

Copyright © 2012 by B11 Standards, Inc.
All rights reserved. Printed in the United States of America
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of B11 Standards, Inc.
AMERICAN NATIONAL STANDARDS

By approving this American National Standard, the ANSI Board of Standards Review confirms that the requirements for due process, consensus, balance and openness have been met by B11 Standards, Inc. (the ANSI-accredited standards developing organization).

American National Standards are developed through a consensus process. Consensus is established when substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward resolution. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While B11 Standards, Inc. administers the process and establishes procedures to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards or guidelines.

American National Standards are promulgated through ANSI for voluntary use; their existence does not in any respect preclude anyone, whether they have approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. However, users, distributors, regulatory bodies, certification agencies and others concerned may apply American National Standards as mandatory requirements in commerce and industry. The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of an American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the Secretariat (B11 Standards, Inc.).

B11 Standards, Inc. makes no warranty, either expressed or implied as to the fitness of merchantability or accuracy of the information contained within this standard, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. B11 Standards, Inc. disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether direct, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application or reliance on this document. B11 Standards, Inc. does not undertake to guarantee the performance of any individual manufacturer or seller's products or services by virtue of this standard or guide, nor does it take any position with respect to the validity of any patent rights asserted in connection with the items which are mentioned in or are the subject of this document, and B11 Standards, Inc. disclaims liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

In publishing or making this document available, B11 Standards, Inc. is not undertaking to render professional or other services for or on behalf of any person or entity, nor is B11 Standards, Inc. undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment, or as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

B11 Standards, Inc. has no power, nor does it undertake to police or enforce conformance to the requirements of this document. B11 Standards, Inc. does not certify, test or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of conformance to any health or safety-related information in this document shall not be attributable to B11 Standards, Inc. and is solely the responsibility of the certifier or maker of the statement.

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. You may contact the Secretariat for current status information on this, or other B11 standards. Individuals interested in obtaining up-to-date information on standards can access this information at http://www.nssn.org (or by contacting ANSI). NSSN - A National Resource for Global Standards, provides a central point to search for standards information from worldwide sources and can connect those who seek standards to those who supply them.

Published by: B11 Standards, Inc.
POB 690905 Houston, TX 77269-0905, USA
Copyright © 2012 by B11 Standards, Inc.
All rights reserved. Printed in the United States of America

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
TABLE of CONTENTS

FOREWORD (THIS FOREWORD IS NOT PART OF THE REQUIREMENTS OF AMERICAN NATIONAL STANDARD B11.15-2001 R2012) ... V

EXPLANATION OF THE FORMAT OF .. VII

THE STANDARD .. VII

INTRODUCTION .. VIII

1 SCOPE ... 10
 1.1 APPLICATIONS .. 10
 1.2 EXCLUSIONS .. 10
 1.3 DESCRIPTIONS ... 2

2 NORMATIVE REFERENCES ... 2

3 DEFINITIONS .. 3

4 RESPONSIBILITY .. 10
 4.1 SUPPLIER’S RESPONSIBILITY .. 10
 4.2 USER’S RESPONSIBILITY .. 11
 4.3 PERSONNEL .. 14

5 HAZARD CONTROL .. 14
 5.1 TASK AND HAZARD IDENTIFICATION .. 14
 5.2 RISK ASSESSMENT/RISK REDUCTION ... 15

6 DESIGN AND CONSTRUCTION ... 16
 6.1 GENERAL .. 16
 6.2 MACHINE CONTROL SYSTEM ... 16
 6.3 DESCRIPTION OF MODES OF OPERATION .. 16
 6.4 ELECTRICAL EQUIPMENT .. 16
 6.5 PNEUMATIC AND HYDRAULIC SYSTEMS ... 17
 6.6 FLUCTUATION IN OR INTERRUPTION OF POWER SOURCES CAUSING HAZARDOUS MOTION .. 18
 6.7 ISOLATION OF POWER SOURCES .. 18
 6.8 STORED ENERGY .. 18
 6.9 INTERFENCES .. 18
 6.10 PERFORMANCE OF THE SAFETY–RELATED FUNCTION(S) ... 19
 6.11 MACHINE INITIATION .. 19
 6.12 STOP AND EMERGENCY STOP CONTROLS .. 19
 6.13 OPERATOR CONTROL STATIONS ... 19
 6.14 MANUALLY-OPERATED CONTROL DEVICES .. 20
 6.15 ELIMINATION OF, OR PROTECTION FROM, INHERENT HAZARDS ... 21
 6.16 WORKPIECE TRANSFER DEVICES .. 22
 6.17 ERGONOMIC CONSIDERATIONS ... 22

7 LAYOUT, INSTALLATION, TESTING AND STARTUP .. 23
 7.1 GENERAL .. 23
 7.2 LAYOUT AND INSTALLATION — SUPPLIER’S RESPONSIBILITY ... 24
 7.3 LAYOUT AND INSTALLATION — USER’S RESPONSIBILITY .. 24
 7.4 TESTING AND START-UP PROCEDURES ... 26
8 SAFEGUARDING .. 27
 8.1 MANDATORY SAFEGUARDING DEVICE .. 27
 8.2 GENERAL ... 27
 8.3 GUARDS .. 28
 8.4 INTERLOCKED GUARDS .. 28
 8.5 SAFEGUARDING DEVICES .. 28
 8.6 AWARENESS DEVICES .. 29
 8.7 SAFE WORK PROCEDURES – USER’S RESPONSIBILITY .. 30
 8.8 PERFORMANCE OF THE SAFETY-RELATED FUNCTION(S) .. 30

9 SET-UP, OPERATION AND MAINTENANCE .. 31
 9.1 GENERAL ... 31
 9.2 TOOL SET-UP ... 31
 9.3 MACHINE INITIATION .. 31
 9.4 PERIMETER IDENTIFICATION ... 32
 9.5 MAINTENANCE ... 32
 9.6 PERSONAL PROTECTIVE EQUIPMENT .. 32
 9.7 TRAINING .. 32
 9.8 SUPERVISION .. 34
 Annex A – Figures ... 35
 Annex B – Examples of Hazards and Hazardous Situations .. 46
 Annex C – Performance of the safety-related function(s) .. 47
 Annex D – Safety Distance .. 48
 Figure D.5: Example of guarding with various object sensitivities .. 52

HAZARD ZONE .. 53
 HAZARD ZONE .. 53
 Figure D.8: Two-hand Control & Two-Hand Trip Devices .. 54
 Figure D.9: RF Presence-sensing Devices .. 54

HAZARD ZONE ... 54
 Annex E – Guidelines for General Training of Operators .. 56
 Annex F – Operator Training Knowledge Inventory ... 57
 Annex G – Key for the Operator Training Knowledge Inventory .. 59
Foreword (This Foreword is not part of the requirements of American National Standard B11.15-2001 R2012)

The primary objective of this standard is to eliminate or control the risk of injuries to personnel associated with pipe tube and shape bending machines by establishing requirements for the machine's construction, operation and maintenance and for the production systems in which pipe, tube and shape bending machines are used. To accomplish this objective, responsibilities have been assigned to the supplier (manufacturer, rebuilder, reconstructor, and user) as well as to personnel in the working environment. Point-of-operation safeguarding is the single most important factor in the elimination of point-of-operation injuries. A production system consists of the pipe, tube or shape bender as one component, feeding methods (including part or scrap removal) as a second component, and the third component, point-of-operation safeguarding. The vital third component, point-of-operation safeguarding, can be evaluated for effectiveness only after the first two components and operator involvement is known.

The safeguarding of production systems in pipe, tube and shape bending operations is complicated by the wide variety of operations and operating conditions, the variations in size, speed, and type of pipe, tube and shape bending machine used; the size, thickness, and kind of pieces to be worked; the required accuracy of the finished work; the skill of operators; the length of run; and the method of tube or shape feeding and part and scrap removal. Because of these varying factors in the operations and in the workplace, a wide variety of point-of-operation safeguarding methods (guards and devices) have been covered in this standard.

The words "safe" and "safety" are not absolutes. Safety begins with good design. While the goal of this standard is to eliminate injuries, it is recognized that risk factors cannot possibly be reduced to zero in any human activity. This standard is not intended to replace good judgment and personal responsibility. Operator skill, attitude, training, job monotony, ergonomic factors, fatigue and experience are safety factors that must be considered by the user.

Pipe, tube and shape bending machines, and associated equipment technologies are continuously evolving. This standard reflects the most commonly used and time-tested state of the art at the time of its approval. The inclusion or omission of language relative to any evolving technology, either in the requirements or explanatory area of this standard, in no way infers acceptance or rejection of such technologies.

EFFECTIVE DATE

The following information on effective dates is informative guidance only, and not a normative part of this standard. This subcommittee recognizes that some period of time after the approval date on the title page of this document is necessary for suppliers and users to develop new designs, or modify existing designs or manufacturing processes in order to incorporate the new or revised requirements of this standard into their product development or production system.

This subcommittee recommends that suppliers complete and implement design changes for new machines and machinery systems within 30 months of the approval of this standard.

The subcommittee recommends that users evaluate whether existing machinery and machinery systems have acceptable risk within 30 months of the approval date of this standard using generally recognized risk assessment methods. If the risk assessment shows that modification(s) is necessary, refer to the requirements of this standard to implement risk reduction measures (risk reduction measures) for appropriate risk reduction.
Inquiries with respect to the application or the substantive requirements of this standard, and suggestions for its improvement, are welcomed and should be sent to B11 Standards, Inc., POB 690905, Houston, TX 77269, Attention: Secretariat.

DEVELOPMENT

This standard was prepared by the B11.15 Subcommittee, processed and submitted for ANSI approval by the B11 Accredited Standards Committee on Safety Standards for Machines. Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time this standard was reaffirmed, the ANSI B11 Accredited Standards Committee was composed of the following Members:

Alan Metelsky, Chairman
Barry Boggs, Vice-Chairman
David Felinski, Secretary

Organizations Represented

<table>
<thead>
<tr>
<th>Name of Representative</th>
<th>Delegate</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Industries Association of America</td>
<td>Willard Wood</td>
<td>Lisa Goldberg / Chris Carnahan</td>
</tr>
<tr>
<td>Aluminum Extruders Council</td>
<td>Melvin Mitchell</td>
<td>Scott Burkett</td>
</tr>
<tr>
<td>American Society of Safety Engineers</td>
<td>Bruce Main, PE, CSP</td>
<td>George Karosas, PE, CSP</td>
</tr>
<tr>
<td>Association For Manufacturing Technology</td>
<td>Russell Bensman</td>
<td>Alan Metelsky</td>
</tr>
<tr>
<td>The Boeing Company</td>
<td>Don Nelson</td>
<td>Lance Chandler, PE</td>
</tr>
<tr>
<td>Canadian Standards Association</td>
<td>Elizabeth Rankin, CRSP</td>
<td>Walter Veugen</td>
</tr>
<tr>
<td>Deere & Co.</td>
<td>Gary Kopps</td>
<td>Scott Fowler</td>
</tr>
<tr>
<td>FDR Safety</td>
<td>Michael Taubitz</td>
<td>Flavius Brown</td>
</tr>
<tr>
<td>General Motors Corporation</td>
<td>Michael Douglas</td>
<td></td>
</tr>
<tr>
<td>Komatsu America Industries</td>
<td>George Schreck</td>
<td>James Landowski</td>
</tr>
<tr>
<td>Metal Powder Industries Federation</td>
<td>Dennis R. Cloutier, CSP</td>
<td>Teresa Stillman</td>
</tr>
<tr>
<td>National Institute for Occupational Safety & Health</td>
<td>Richard Current, PE</td>
<td>James Harris, PhD, PE</td>
</tr>
<tr>
<td>Occupational Safety & Health Administration</td>
<td>Kenneth Stevanus</td>
<td>Robert Bell</td>
</tr>
<tr>
<td>Omron Scientific Technologies Incorporated</td>
<td>Frank Webster</td>
<td>Christopher Soranno</td>
</tr>
<tr>
<td>Packaging Machinery Manufacturers Institute</td>
<td>Charles Hayes</td>
<td>Maria Ferrante</td>
</tr>
<tr>
<td>Pilz Automation Safety, LP</td>
<td>Michael Beerman</td>
<td>Lee Burk</td>
</tr>
<tr>
<td>Precision Metalforming Association</td>
<td>James Barrett, Jr. PhD</td>
<td>Bill Gaskin / Christen Carmigiano</td>
</tr>
<tr>
<td>Presence-sensing Device Manufacturers Association</td>
<td>James V. Kirton</td>
<td>Michael Carlson</td>
</tr>
<tr>
<td>Property Casualty Insurers</td>
<td>Stanford Brubaker</td>
<td>John Russell, PE, CSP</td>
</tr>
<tr>
<td>Robotic Industries Association</td>
<td>Jeffrey Fryman</td>
<td>Claude Dinsmoor</td>
</tr>
<tr>
<td>Rockwell Automation</td>
<td>Patrick Barry</td>
<td>Michael Miller</td>
</tr>
<tr>
<td>Safe-T-Sense</td>
<td>Samuel Boytor</td>
<td>Mark Witherspoon</td>
</tr>
<tr>
<td>Sheet Metal & Air Conditioning Contractors Nat'l. Assn.</td>
<td>Michael McCullion</td>
<td>Roy Brown</td>
</tr>
<tr>
<td>System Safety Society</td>
<td>John Etherton, PhD, CSP</td>
<td>Rod Simmons, PhD</td>
</tr>
<tr>
<td>Toyota Motor Manufacturing North America</td>
<td>Barry Boggs</td>
<td>Todd Mills</td>
</tr>
<tr>
<td>International United Automotive Workers</td>
<td>Tom Ford</td>
<td></td>
</tr>
</tbody>
</table>

At the time this standard was approved, the ANSI B11 ASC B11.15 Subcommittee had the following members who participated in the development of this revision:

Robert Grice, Chairman
Thomas Glissman, Secretary
Robert Eggleston
Joseph Kelly
David Felinski, Secretary

Creation Windows
Pines Manufacturing
Drion Safety Service, Inc. (Previously with G.E. Aircraft Engines)
(Previously with Allegheny Teledyne Industries; past Chairman of the B11.15 Subcommittee)
This ANSI B11.15 – 2001 (R12) standard is divided into parts formerly referred to as sections or chapters and now referred to as clauses in line with the current ANSI style manual. Major divisions of clauses are referred to as subclauses and, when referenced by other text in the standard, are denoted by the subclause number (e.g., see 5.1).

The standard uses a two-column format to provide supporting information for requirements. The material in the left column is confined to “Standards Requirements” only, and is so captioned. The right column, captioned "Explanatory Information" contains information that the writing Subcommittee felt would clarify the standard. This column should not be construed as being a part of the requirements of this American National Standard.

Operating rules (safe practices) are not included in either column of this standard unless they are of such nature as to be vital safety requirements, equal in weight to other requirements, or guides to assist in compliance with the standard.

As in all American National Standards, the term “SHALL” denotes a requirement that is to be strictly followed in order to conform to this standard; no deviation is permitted. The term “SHOULD” denotes a recommendation, a practice or condition among several alternatives, or a preferred method or course of action.

Similarly, the term “CAN” denotes a possibility, ability or capability, whether physical or causal, and the term “MAY” denotes a permissible course of action within the limits of the standard.

By convention, the B11 standards do not use the term “and/or” but instead, the term “OR” is used as an inclusive disjunction, meaning one or the other or both.

Suggestions for improvement of this standard will be welcome. They should be sent to B11 Standards, Inc., POB 690905, Houston, TX 77269 - Attention: B11 Secretariat.
Introduction

The primary purpose of every machine tool is to process parts. This is accomplished by the machine imparting process energy onto the workpiece. Inadvertent interference with, or accidental misdirection of the released energy during production, maintenance, commissioning and de-commissioning may result in injury.

The purpose of the ANSI B11 series of machine tool safety standards is to devise and propose ways to minimize risks of the potential hazards. This can be accomplished either by an appropriate machine design or by restricting personnel or other individuals’ access to hazard areas, and by devising work procedures to minimize personnel exposure to hazardous situations. This is the essence of the ANSI B11 series of safety standards.

The responsibility for the alleviation of these risks is divided between the equipment supplier, its user and its operating personnel, as follows (numbers in parentheses refer to the clause numbers in these standards which address that responsibility):

![Diagram of responsibilities]

Figure 1 – Typical layout of B11 base standards showing the various responsibilities
Figure 1 (previous page) provides an overview of this standard and in particular, the responsibilities of and requirements for the supplier and user, including the user personnel. Numbers in parentheses denote the particular clause or subclause of the standard. A solid line between a block showing reference standard(s) and a block showing a normative clause denotes part of the requirements. A dashed line denotes an informative reference.

Notes for Figure 1:

1) Scope – Provides the boundaries or limits of the standard (i.e., what is/is not included in the coverage or requirements).

2) Normative references – Other standards which in whole or in part provide additional requirements when referenced in the normative text (i.e., left-hand column of clauses 4 – 9) of this standard.

3) Definitions – Terms used in this standard in a unique or particular manner, together with their definitions (terms used in the same context as are generally understood and commonly used in everyday English are not defined).

4) Responsibility – The general responsibilities of the supplier (builder), user, and the user personnel are listed in clause 4 together with which of the remaining clauses they have primary responsibility.

5) Risk assessment process – Clause 5 presents the general approach to risk assessment (see B11.0 [B11.TR3] for further explanation of hazard/task identification and risk assessment/risk reduction).

6) Design and construction – Generally, the supplier will be responsible for the requirements of clause 6, understanding that the user may add to or modify these requirements through the purchase agreement.

7) Layout, installation, testing and start-up – Although the requirements of clause 7 are predominantly the responsibility of the user, the supplier will normally provide assistance either directly (providing personnel) or indirectly (instruction materials).

8) Safeguarding – This is normally a shared responsibility between the supplier and user but often, either the supplier or the user will provide and/or meet most or even all of the requirements of clause 8.

9) Setup, operation and maintenance – The user is generally responsible for the requirements of clause 9, with possible assistance from the supplier for training.
American National Standard for Machines –
Safety Requirements for
Pipe, Tube, and Shape Bending Machines

STANDARDS REQUIREMENTS

1 Scope
The requirements of this standard apply to any power-driven machine designed for bending pipe, tube, and shapes by means of bending dies, clamp dies, pressure dies, mandrels, wiper dies, vertical bending punches, radius dies, wing dies, and associated tooling.

NOTE - In the context of this standard, machine refers to pipe, tube, and shape bending machines.

1.1 Applications
The requirements of this standard apply to:
- Vertical hydraulic benders;
- Horizontal hydraulic benders;
- Horizontal mechanical benders;
- Horizontal or vertical combination hydraulic and mechanical benders and combination pneumatic and mechanical benders;
- Compression benders;
- Draw benders;
- Pipe benders;
- Stretch benders;
- Tube benders.

1.2 Exclusions
The requirements of this standard do not apply to:
- Bench presses;
- Hydro forming;
- Forging presses;
- Four-slide machines;
- Hydraulic presses;
- Mechanical presses;
- Power press brakes;
- Roll benders;
- Roll formers;
- Assembly machines.

E1
For examples of bending applications, see Figure 1.