ANSI B11.19-2003 (R09)

American National Standard for Machine Tools –

Performance Criteria for Safeguarding

Secretariat and Accredited Standards Developing Organization:

The Association for Manufacturing Technology
7901 Westpark Drive
McLean, VA 22102

Approved: APRIL 29, 2003
Reaffirmed: September 9, 2009

American National Standards Institute
AMERICAN NATIONAL STANDARDS

By approving this American National Standard, the ANSI Board of Standards Review confirms that the requirements for due process, consensus, balance and openness have been met by AMT – The Association For Manufacturing Technology (the ANSI-accredited standards developing organization).

American National Standards are developed through a consensus process. Consensus is established when substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward resolution. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While AMT administers the process and establishes procedures to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards or guidelines.

American National Standards are promulgated through ANSI for voluntary use; their existence does not in any respect preclude anyone, whether they have approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. However, users, distributors, regulatory bodies, certification agencies and others concerned may apply American National Standards as mandatory requirements in commerce and industry.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of an American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the Secretariat (AMT).

AMT makes no warranty, either expressed or implied as to the fitness of merchantability or accuracy of the information contained within this standard, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. AMT disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application or reliance on this document. AMT does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide, nor does it take any position with respect to the validity of any patent rights asserted in connection with the items which are mentioned in or are the subject of this document, and AMT disclaims liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

In publishing or making this document available, AMT is not undertaking to render professional or other services for or on behalf of any person or entity, nor is AMT undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment, or as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

AMT has no power, nor does it undertake to police or enforce conformance to the requirements of this document. AMT does not certify, test or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of conformance to any health or safety-related information in this document shall not be attributable to AMT and is solely the responsibility of the certifier or maker of the statement.

NOTE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. You may contact the Secretariat for current status information on this, or other B11 standards. Individuals interested in obtaining up-to-date information on standards can access this information at http://www.nssn.org (or by contacting ANSI). NSSN - A National Resource for Global Standards, provides a central point to search for standards information from worldwide sources and can connect those who seek standards to those who supply them.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>V</td>
</tr>
<tr>
<td>EXPLANATION OF THE FORMAT OF THIS STANDARD, AND ANSI B11 CONVENTIONS</td>
<td>VII</td>
</tr>
<tr>
<td>1 SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>2 NORMATIVE REFERENCES</td>
<td>1</td>
</tr>
<tr>
<td>3 DEFINITIONS</td>
<td>3</td>
</tr>
<tr>
<td>4 RESPONSIBILITY</td>
<td>9</td>
</tr>
<tr>
<td>4.1 SAFEGUARDING SUPPLIER</td>
<td>9</td>
</tr>
<tr>
<td>4.2 SAFEGUARDING USER</td>
<td>9</td>
</tr>
<tr>
<td>4.3 PERSONNEL</td>
<td>10</td>
</tr>
<tr>
<td>5 HAZARD CONTROL</td>
<td>10</td>
</tr>
<tr>
<td>6 GENERAL SAFEGUARDING REQUIREMENTS</td>
<td>11</td>
</tr>
<tr>
<td>6.1 PERFORMANCE OF THE SAFETY-RELATED FUNCTION(S)</td>
<td>11</td>
</tr>
<tr>
<td>6.2 SAFETY DISTANCE</td>
<td>12</td>
</tr>
<tr>
<td>6.3 STOPPING PERFORMANCE MONITOR</td>
<td>12</td>
</tr>
<tr>
<td>7 GUARDS: FIXED, ADJUSTABLE, AND INTERlocked</td>
<td>12</td>
</tr>
<tr>
<td>7.1 DESIGN AND CONSTRUCTION</td>
<td>12</td>
</tr>
<tr>
<td>7.2 INSTALLATION AND OPERATION</td>
<td>13</td>
</tr>
<tr>
<td>8 SAFEGUARDING (PROTECTIVE) DEVICES</td>
<td>15</td>
</tr>
<tr>
<td>8.1 MOVABLE BARRIER DEVICES</td>
<td>15</td>
</tr>
<tr>
<td>8.2 PULL BACK (PULL out) AND RESTRAINT DEVICES</td>
<td>16</td>
</tr>
<tr>
<td>8.3 ELECTRO-OPTICAL, RF, AND AREA SCANNING PRESENCE-SENSING SAFEGUARDING DEVICES</td>
<td>17</td>
</tr>
<tr>
<td>8.4 TWO-HAND OPERATING LEVER, TRIP AND CONTROL DEVICES</td>
<td>22</td>
</tr>
<tr>
<td>8.5 SAFETY MAT DEVICES</td>
<td>25</td>
</tr>
<tr>
<td>8.6 SAFETY EDGE DEVICES</td>
<td>28</td>
</tr>
<tr>
<td>8.7 PROBE DETECTION DEVICES</td>
<td>31</td>
</tr>
<tr>
<td>8.8 SINGLE CONTROL SAFEGUARDING DEVICES</td>
<td>32</td>
</tr>
<tr>
<td>9 AWARENESS BARRIERS, SIGNALS AND SIGNS</td>
<td>33</td>
</tr>
<tr>
<td>9.1 AWARENESS BARRIERS</td>
<td>33</td>
</tr>
<tr>
<td>9.2 AWARENESS SIGNALS</td>
<td>34</td>
</tr>
<tr>
<td>9.3 AWARENESS (SAFETY) SIGNS</td>
<td>34</td>
</tr>
</tbody>
</table>
10 SAFEGUARDING METHODS ... 34
 10.1 SAFE DISTANCE SAFEGUARDING ... 35
 10.2 SAFE HOLDING SAFEGUARDING ... 35
 10.3 SAFE OPENING SAFEGUARDING ... 36
 10.4 OTHER SAFEGUARDING METHODS ... 36

11 SAFE WORK PROCEDURES ... 36

12 COMPLEMENTARY EQUIPMENT .. 37
 12.1 SAFETY BLOCKS, SLIDE LOCKS, CHAIN LOCKS, LOCKING PINS .. 37
 12.2 WORKHOLDING EQUIPMENT .. 38
 12.3 ENABLING DEVICES ... 38
 12.4 STOPPING PERFORMANCE MONITOR ... 40
 12.5 PROCESS MALFUNCTION, DETECTION AND MONITORING EQUIPMENT 41
 12.6 HAND TOOLS .. 41
 12.7 SAFETY INTERFACE (SAFETY RELAY) MODULES ... 42
 12.8 COVERS AND SHIELDS ... 42
 12.9 STOP AND EMERGENCY STOP DEVICES ... 42

13 INSPECTION AND MAINTENANCE OF SAFEGUARDING .. 42

14 TRAINING ON THE USE OF SAFEGUARDING ... 43

INFORMATIVE ANNEXES

ANNEX A – GUIDANCE IN UNDERSTANDING THE B11 STANDARDS, B11.19 AND B11.TR3 ... 44

ANNEX B – HAZARD LIST FOR SAFEGUARDING .. 45

ANNEX C – PERFORMANCE OF THE SAFETY-RELATED FUNCTION(S) .. 46

ANNEX D – SAFETY DISTANCE ... 47

ANNEX E - APPLICATIONS AND ATTRIBUTES ... 56
Foreword (This foreword is not part of the requirements of American National Standard B11.19-2003)

The primary objective of this standard is to establish the requirements for the design, construction, installation, operation and maintenance of the safeguarding (e.g., guards, safeguarding devices, awareness devices, safeguarding methods and safe work procedures) used to eliminate or control hazards to individuals associated with machine tools. This standard relies on other standards to determine which safeguarding is required or allowed to control identified hazards or hazardous situations, and is intended to be used in conjunction with the ANSI B11 “base” standard for a given machine tool. To accomplish this objective, this standard has established responsibilities for the safeguarding supplier (e.g., manufacturer, rebuilder, installer, integrator and modifier), the user, and individuals in the working environment. The overall goal is to achieve safe work practices and a safe work environment. In addition, this standard includes a comprehensive informative Annex on safety distance, which utilizes the updated Liberty Mutual anthropometric data. The original data, which OSHA (29 CFR 1910.217 Table 0-10) uses to base their safe distance safeguarding, was developed by Liberty Mutual in the 1940s. This data was updated and published in 1995, and used larger anthropometric surveys especially relating to women and minorities. While the data sets are similar, several important modifications to the maximum gap size / minimum distance were suggested, and these modifications have been incorporated (see Table D.1 and Figure D.10, Annex D).

The words “safe” and “safety” are not absolutes. Safety begins with good design. While the goal of this standard is to eliminate injuries, this standard recognizes that risk factors cannot practically be reduced to zero in any human activity. This standard is not intended to replace good judgment and personal responsibility. Operator skill, attitude, training, job monotony, fatigue and experience are safety factors that must be considered by the user.

Safeguarding and associated equipment technologies are continuously evolving. This standard reflects the most commonly used and time-tested state of the art at the time of its approval. The inclusion or omission of language relative to any evolving technology, either in the requirements or explanatory area of this standard, in no way infers acceptance or rejection of such technologies.

Inquiries with respect to the application or the substantive requirements of this standard, and suggestions for its improvement are welcomed, and should be sent to the AMT – The Association For Manufacturing Technology, 7901 Westpark Drive, McLean, Virginia 22102-4269, Attention: B11 Secretariat.

This standard was processed and submitted for ANSI approval by the B11 Accredited Standards Committee on Safety Standards for Machine Tools. Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time this standard was approved as an American National Standard, the ANSI B11 Accredited Standards Committee was composed of the following member organizations:

John W. Russell, PE, CSP Chairman
Gary D. Kopps, Vice-Chairman
David A. Felinski, Secretary

<table>
<thead>
<tr>
<th>Organizations Represented</th>
<th>Delegate</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Industries Association of America</td>
<td>Wil Wood, ARM</td>
<td>Robert Eaker, PE, CSP</td>
</tr>
<tr>
<td>Alliance of American Insurers</td>
<td>John Russell, PE, CSP</td>
<td>Keith Lessner</td>
</tr>
<tr>
<td>Aluminum Extruders Council</td>
<td>Jeff Dziki</td>
<td>Martin Bidwell</td>
</tr>
<tr>
<td>American Institute of Steel Construction</td>
<td>Thomas Schlafly</td>
<td></td>
</tr>
<tr>
<td>American Society of Safety Engineers</td>
<td>Bruce Main, PE, CSP</td>
<td>George Karosas, PE, CSP</td>
</tr>
<tr>
<td>Association For Manufacturing Technology</td>
<td>Russell Bensman</td>
<td></td>
</tr>
<tr>
<td>Can Manufacturers Institute</td>
<td>Geoff Cullen</td>
<td></td>
</tr>
<tr>
<td>Deere and Company</td>
<td>Gary D. Kopps</td>
<td>Ellen K. Blanshan</td>
</tr>
<tr>
<td>Forging Industry Association</td>
<td>John W. Commet</td>
<td>Karen Taylor</td>
</tr>
<tr>
<td>General Motors Corporation</td>
<td>Michael Taubitz</td>
<td></td>
</tr>
</tbody>
</table>
At the time this standard was approved, the ANSI B11 ASC **B11.19 Subcommittee** had the following members who participated in the development of this revision:

Barry A. Stockton, High Tech Consulting Chairman
- Don Allison, PhD, PE
- Chris Bacon
- Jim Barrett, PhD, PE
- Joe Bode
- Sam Boytor
- Mike Carlson
- Mike Crampton
- Howard DeWees
- Steve Dukich
- Dennis Ebens
- Mathew F. Einecker, PE
- John Etherton, PhD, PE
- George Fargher
- Roy F. Gottschalk
- Christine Hansen
- Michel Houtermans
- Jim Howe, CSP
- Jim Kirton
- Richard Larson
- Don Lawson
- Tom Levitt
- Marshall Lovelace
- Jose Marsano
- John Perrotti, III
- Jack Podojil
- Tom Polistina
- Bill Riley
- Bill Roorda, PE
- George Schreck
- Louis Schubert
- Joe Schultz
- Chris Soranno
- Mike Taubitz

David A. Felinski, AMT Secretary
- Allison Engineering
- Delphi Automotive Systems
- Link Systems
- Industrial Safety Consultant
- Fox Controls, Inc.
- Banner Engineering
- General Motors
- SICK Inc.
- Rockwell Automation
- Rockford Systems
- Control Reliability Engineering
- NIOSH
- Tapeswitch
- Gottschalk Engineering Associates
- Underwriters Laboratories
- TUV
- UAW International Union
- ISB Services
- LARCO/Safety Controls
- Pilz Automation Safety
- Levitt & Associates
- Stuart C. Irby Company
- TUV Product Service
- Gordon Engineering
- Podojil & Associates
- Tapeswitch
- U.S. Department Of Navy
- Alcona Associates
- Komatsu America Industries
- Scientific Technologies
- Larco
- Safe-T-Sense
- General Motors

Various delegates depending on the Standard
Explanation of the format of this standard, and ANSI B11 conventions

This ANSI B11.19 – 2003 American National Standard is divided into parts formerly referred to as sections or chapters and now referred to as clauses in line with the current ANSI style manual. Major divisions of clauses are referred to as subclauses and, when referenced by other text in the standard, are denoted by the subclause number (e.g., see 5.1).

The standard uses a two-column format to provide supporting information for requirements. The material in the left column is confined to “Standards Requirements” only, and is so captioned. The right column, captioned "Explanatory Information" contains information that the writing Subcommittee believed would help clarify the requirements of the standard. The Explanatory Information column should not be construed as being a part of the requirements of this American National Standard.

As in all American National Standards, the term “SHALL” denotes a requirement that is to be strictly followed in order to conform to this standard; no deviation is permitted. The term “SHOULD” denotes a recommendation, a practice or condition among several alternatives, or a preferred method or course of action.

Similarly, the term “CAN” denotes a possibility, ability or capability, whether physical or causal, and the term “MAY” denotes a permissible course of action within the limits of the standard.

To achieve uniform interpretation, it is imperative to read and understand the definitions (clause 3) of this standard.

B11 conventions: Operating rules (safe practices) are not included in either column of this standard unless they are of such nature as to be vital safety requirements, equal in weight to other requirements, or guides to assist in compliance with the standard. The B11 standards do not use the term "and/or" but instead, the term "OR" is used as an inclusive disjunction, meaning one or the other or both. A distinction between the terms “individual” and “personnel” is drawn. Individual includes personnel (employees, subcontractors, consultants, or other contract workers under the indirect control of the supplier or user) but also encompasses persons who are not under the direct or indirect control of the supplier or user (e.g., visitors, vendors, etc.). Gauge refers to a measuring or testing instrument; gage refers to a limiting device (e.g., backgage). All Annexes are for information purposes only and are not normative parts of the standard.

Suggestions for improvement of this standard will be welcome. They should be sent to AMT-The Association For Manufacturing Technology, 7901 Westpark Drive, McLean, VA 22102 - Attention: B11 Secretariat.
American National Standard for Machine Tools -
Performance Criteria for Safeguarding

STANDARD REQUIREMENTS

1 Scope

This standard provides performance requirements for the design, construction, installation, operation and maintenance of the safeguarding listed below when applied to machine tools.

a) Guards (see clause 7);

b) Safeguarding devices (see clause 8);

c) Awareness devices (see clause 9);

 d) Safeguarding methods (see clause 10);

e) Safe work procedures (see clause 11);

This standard does not provide the requirements for the selection of the safeguarding for a particular application.

2 Normative references

The standards below contain provisions that are referenced in this text. This standard is intended to be used in conjunction with these standards. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated.

ANSI / NFPA 79 -2002 Electrical Standard for Industrial Machinery

ANSI Z535.3 – 2002 Criteria for Safety Symbols

ANSI Z535.4 – 2002 Product Safety Signs and Labels

EXPLANATORY INFORMATION

E1

The manufacturer or supplier referred to in this standard is the manufacturer or supplier of the safeguarding, not the manufacturer or supplier of the machine tool (see clause 3 definitions of manufacturer and supplier).

See the appropriate ANSI B11 machine tool safety standard for the requirements for the selection of safeguarding based on specific applications. Selection of the safeguarding requires task and hazard identification, and the application of risk assessment and risk reduction of the total production system.

E2 Informative references

The standards below contain information and guidance in the implementation of the requirements of this standard or are referenced by other B11 standards. They are included for information only.

ANSI / NFPA 70 – 2002 The National Electrical Code

ANSI Z244.1–2003 Control of hazardous energy – Lockout/tagout and alternative methods

IEC 61496, 1997: Safety of machinery; Electrosensitive protective equipment

29 CFR 1910.147: Control of hazardous energy (‘lockout/tagout’) (For more info, www.osha.gov)