American National Standard for Machines—

Functional Safety for Equipment:
General Principles for the Design of Safety Control Systems Using ISO 13849-1

ANSI Accredited Standards Developer and Secretariat:

B11 Standards, Inc.
POB 690905
Houston, TX 77269
www.b11standards.org

Approved: 27 November 2018
by the American National Standards Institute, Inc.

COPYRIGHT PROTECTED DOCUMENT

Copyright © 2018 by B11 Standards, Inc.
All rights reserved. Printed in the United States of America
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of B11 Standards, Inc.
By approving this American National Standard, the ANSI Board of Standards Review confirms that the requirements for due process, consensus, balance and openness have been met by B11 Standards, Inc. (the ANSI-accredited standards developing organization).

American National Standards are developed through a consensus process. Consensus is established when substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward resolution. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While B11 Standards, Inc. administers the process and establishes procedures to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards or guidelines.

American National Standards are promulgated through ANSI for voluntary use; their existence does not in any respect preclude anyone, whether they have approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. However, users, distributors, regulatory bodies, certification agencies and others concerned may apply American National Standards as mandatory requirements in commerce and industry.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of an American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the Secretariat (B11 Standards, Inc.).

B11 STANDARDS, INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED AS TO THE FITNESS OF MERCHANTABILITY OR ACCURACY OF THE INFORMATION CONTAINED WITHIN THIS STANDARD AND DISCLAIMS AND MAKES NO WARRANTY THAT THE INFORMATION IN THIS DOCUMENT WILL FULFILL ANY OF YOUR PARTICULAR PURPOSES OR NEEDS. B11 STANDARDS, INC. DISCLAIMS LIABILITY FOR ANY PERSONAL INJURY, PROPERTY OR OTHER DAMAGES OF ANY NATURE WHATSOEVER, WHETHER SPECIAL, INDIRECT, CONSEQUENTIAL OR COMPENSATORY, DIRECTLY OR INDIRECTLY RESULTING FROM THE PUBLICATION, USE OF, APPLICATION OR RELIANCE ON THIS DOCUMENT. B11 STANDARDS, INC. DOES NOT UNDERTAKE TO GUARANTEE THE PERFORMANCE OF ANY INDIVIDUAL MANUFACTURER OR SELLER’S PRODUCTS OR SERVICES BY VIRTUE OF THIS STANDARD OR GUIDE, NOR DOES IT TAKE ANY POSITION WITH RESPECT TO THE VALIDITY OF ANY PATENT RIGHTS ASSERTED IN CONNECTION WITH THE ITEMS WHICH ARE MENTIONED IN OR ARE THE SUBJECT OF THIS DOCUMENT, AND B11 STANDARDS, INC. DISCLAIMS LIABILITY FOR THE INFRINGEMENT OF ANY PATENT RESULTING FROM THE USE OF OR RELIANCE ON THIS DOCUMENT. USERS OF THIS DOCUMENT ARE EXPRESSLY ADVISED THAT DETERMINATION OF THE VALIDITY OF ANY SUCH PATENT RIGHTS, AND THE RISK OF INFRINGEMENT OF SUCH RIGHTS, IS ENTIRELY THEIR OWN RESPONSIBILITY.

In publishing or making this document available, B11 Standards, Inc. is not undertaking to render professional or other services for or on behalf of any person or entity, nor is B11 Standards, Inc. undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment, or as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

B11 Standards, Inc. has no power, nor does it undertake to police or enforce conformance to the requirements of this document. B11 Standards, Inc. does not certify, test or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of conformance to any health or safety-related information in this document shall not be attributable to B11 Standards, Inc. and is solely the responsibility of the certifier or maker of the statement.

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. You may contact the Secretariat for current status information on this, or other B11 standards.

Published by:
B11 Standards, Inc.
POB 690905, Houston TX 77269 USA
dfelinski@b11standards.org

Copyright © 2018 by B11 Standards, Inc. All rights reserved. Printed in the United States of America
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>8</td>
</tr>
<tr>
<td>Introduction & Overview of the ANSI B11 Series of Machinery Safety Standards</td>
<td>10</td>
</tr>
<tr>
<td>1 Scope</td>
<td>13</td>
</tr>
<tr>
<td>2 References</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Normative References</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Informative References</td>
<td>13</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>14</td>
</tr>
<tr>
<td>4 How to use ANSI B11.26</td>
<td>20</td>
</tr>
<tr>
<td>4.1 Circuit Examples and Analysis Tables</td>
<td>20</td>
</tr>
<tr>
<td>5 Preparations for Functional Safety Design</td>
<td>21</td>
</tr>
<tr>
<td>5.1 Conduct a Risk Assessment (per ANSI B11.0)</td>
<td>21</td>
</tr>
<tr>
<td>5.2 Identify Risk Reduction Measures that Involve the SRP/CS</td>
<td>23</td>
</tr>
<tr>
<td>5.3 Define the Safety Function</td>
<td>23</td>
</tr>
<tr>
<td>5.4 Determine the Reliability Design Specification for Each Circuit</td>
<td>24</td>
</tr>
<tr>
<td>5.4.1 Performance Level (PL) Methodology (ISO 13849-1)</td>
<td>24</td>
</tr>
<tr>
<td>5.4.1.1 Architecture</td>
<td>24</td>
</tr>
<tr>
<td>5.4.1.2 Select Components</td>
<td>25</td>
</tr>
<tr>
<td>5.4.1.3 Fault considerations</td>
<td>25</td>
</tr>
<tr>
<td>5.4.1.4 Diagnostic Coverage (DC)</td>
<td>25</td>
</tr>
<tr>
<td>5.4.1.5 Common Cause Failure (CCF)</td>
<td>25</td>
</tr>
<tr>
<td>5.4.1.6 Calculating a PL</td>
<td>26</td>
</tr>
<tr>
<td>5.4.2 Category methodology (ISO 13849-1 and EN 954)</td>
<td>26</td>
</tr>
<tr>
<td>5.4.2.1 Architecture</td>
<td>26</td>
</tr>
<tr>
<td>5.4.2.2 Summary of ISO 13849-1 Categories</td>
<td>26</td>
</tr>
<tr>
<td>5.4.3 Control reliable methodology (ANSI B11)</td>
<td>27</td>
</tr>
<tr>
<td>5.5 Define Basic Input, Logic and Output Elements Required</td>
<td>27</td>
</tr>
<tr>
<td>5.5.1 Inputs</td>
<td>27</td>
</tr>
<tr>
<td>5.5.2 Logic</td>
<td>27</td>
</tr>
<tr>
<td>5.5.3 Outputs</td>
<td>27</td>
</tr>
<tr>
<td>6 General Design Requirements</td>
<td>28</td>
</tr>
<tr>
<td>6.1 Integration of SRP/CS in the Overall Machine Controls</td>
<td>28</td>
</tr>
<tr>
<td>6.1.1 Typical Non-Safety Control Components Augmented by SRP/CS</td>
<td>28</td>
</tr>
<tr>
<td>6.2 Specific Functions</td>
<td>29</td>
</tr>
<tr>
<td>6.2.1 Protective Stop</td>
<td>29</td>
</tr>
<tr>
<td>6.2.2 Start Function</td>
<td>29</td>
</tr>
<tr>
<td>6.3 Electrical Design Requirements</td>
<td>29</td>
</tr>
<tr>
<td>6.3.1 Opening of Circuits for Time Dependent Functions</td>
<td>29</td>
</tr>
<tr>
<td>6.3.2 Positive/Negative Logic</td>
<td>29</td>
</tr>
<tr>
<td>6.3.3 Interfacing SRP/CS with Non-Safety PES/PL</td>
<td>30</td>
</tr>
<tr>
<td>6.3.4 Electro-Mechanical Contact Requirements</td>
<td>30</td>
</tr>
<tr>
<td>6.4 Fluid Power (Pneumatics and Hydraulics) Design Requirements</td>
<td>30</td>
</tr>
<tr>
<td>6.4.1 Protective Stops in Fluid Power Systems</td>
<td>30</td>
</tr>
<tr>
<td>6.4.2 Reset Function of Safety Valves</td>
<td>31</td>
</tr>
<tr>
<td>6.4.3 Reapplication of Pressure</td>
<td>31</td>
</tr>
<tr>
<td>6.4.4 Fluid Power Valve Crossover</td>
<td>31</td>
</tr>
</tbody>
</table>
7 Fault Consideration ... 32
 7.1 Fault Exclusion .. 32
 7.2 Electrical Failure Modes .. 32
 7.2.1 General Failure Modes .. 32
 7.3 Fluid Power Failure Modes .. 33
 7.3.1 General Failure Modes .. 33
 7.3.2 Pneumatic Failure Modes .. 34
 7.3.3 Hydraulic Failure Modes .. 34

8 Monitoring / Diagnostic Coverage ... 35
 8.1 Electrical Monitoring / Diagnostic Coverage Methods 36
 8.1.1 Input Masking on Series Connected Devices 36
 8.2 Fluid Power Monitoring / Diagnostic Coverage Methods 36

9 Design Requirements – Input Devices (Engineering Control – Devices) ... 37
 9.1 Emergency Stop Devices .. 37
 9.1.1 Design Requirements .. 37
 9.1.2 Design Considerations .. 37
 9.1.2.1 Tampering / Defeat .. 37
 9.1.2.2 Failure Modes .. 37
 9.1.3 Application Examples .. 38
 9.1.3.1 Single Channel E-stop Using a Control Relay (Category 1) 38
 9.1.3.2 Low / Intermediate Risk Reduction (Category 2) 39
 9.1.3.3 Intermediate / High Risk Reduction (Category 3) 40
 9.1.3.4 Highest risk reduction (Category 4) 42
 9.2 Mechanical (Contacting) Guard Interlocking Devices 43
 9.2.1 Design Requirements .. 43
 9.2.2 Design Considerations .. 43
 9.2.2.1 General Information ... 44
 9.2.3 Application Examples .. 46
 9.2.3.1 Basic Circuit (Category B) .. 46
 9.2.3.2 Lowest Risk Reduction (Category 1) 47
 9.2.3.3 Low / Intermediate Risk Reduction (Category 2) 48
 9.2.3.4 Intermediate / High Risk Reduction (Category 3) 49
 9.2.3.5 Highest Risk Reduction (Category 4) 51
 9.3 Non-Contact Guard Interlocking Devices 53
 9.3.1 Design Requirements .. 53
 9.3.2 Design Considerations .. 53
 9.3.3 Application Examples .. 53
 9.3.3.1 General information ... 53
 9.3.3.2 Basic Risk Reduction (Category B) 55
 9.3.3.3 Low / Intermediate Risk Reduction (Category 2) 57
 9.3.3.4 Intermediate / High Risk Reduction (Category 3) 58
 9.3.3.5 Highest Risk Reduction (Category 4) 60
 9.4 Guard Locking Interlocks ... 64
 9.4.1 Design Requirements .. 64
 9.4.2 Design Considerations .. 64
 9.4.3 Application Examples .. 64
 9.4.3.1 General Information ... 64
 9.4.3.2 Low / Intermediate Risk Reduction (Category 2) 65
 9.4.3.3 Intermediate / High Risk Reduction (Category 3) 66
 9.4.3.4 Highest Risk Reduction (Category 4) 67
 9.5 Optical Presence Sensing Devices .. 70
 9.5.1 Design Requirements .. 70
 9.5.2 Design Considerations .. 70
 9.5.2.1 General Information ... 70
 9.5.2.2 Safety Light Curtains .. 70
 9.5.2.3 Single/Multiple Safety Beam Devices (Point or Grid Devices) .. 71
9.5.3 Application Examples ... 71

9.5.3.1 Lowest Risk Reduction (Category 1) 72
9.5.3.2 Low / Intermediate Risk Reduction (Category 2) 73
9.5.3.3 Intermediate / High Risk Reduction (Category 3) 75
9.5.3.4 Highest Risk Reduction (Category 4) 76

9.6 Safety Mats / Edges .. 78

9.6.1 Design Requirements ... 78
9.6.2 Design Considerations .. 78
9.6.3 Application Examples .. 78

9.6.3.1 Low / Intermediate Risk Reduction (Category 2) 78
9.6.3.2 Intermediate / High Risk Reduction (Category 3) 79

9.7 Two-Hand Control .. 80

9.7.1 Design Requirements ... 80
9.7.2 Design Considerations .. 80
9.7.2.1 General Information ... 80
9.7.2.2 Tampering / Defeat ... 80
9.7.2.3 Failure Modes .. 80
9.7.3 Application Examples .. 81

9.7.3.1 Lowest Risk Reduction Two Hand Control (Type Illa Category 1) 81
9.7.3.2 Intermediate / High Risk Reduction Two-Hand Control (Type Illb Category 3) .. 83
9.7.3.3 Intermediate / High Risk Reduction Two-Hand Control (Type Illb Category 3) .. 83
9.7.3.4 Highest Risk Reduction Two-Hand Control (Type Illc Category 4) 85

9.8 Speed Detection .. 86

9.8.1 Design Requirements ... 86
9.8.2 General Information and Design Considerations 86

9.8.2.1 Back EMF Sensing ... 86
9.8.2.2 Encoder Sensing .. 86
9.8.2.3 Proximity Switch Sensing 86
9.8.2.4 Tampering / Defeat ... 86
9.8.2.5 Failure Modes .. 86

9.8.3 Application Examples .. 87
69.8.3.1 Lowest Risk Reduction (Category 1) 87
9.8.3.2 Intermediate / High Risk Reduction (Category 3) 88

9.9 Enabling Devices ... 94

9.9.1 Design Requirements ... 94
9.9.2 Design Considerations .. 94
9.9.2.1 Tampering / Defeat ... 94
9.9.2.2 Failure Modes .. 94

9.9.3 Application Examples .. 95

9.9.3.1 Low / Intermediate Risk Reduction (Category 2) 95
9.9.3.2 Intermediate / High Risk Reduction (Category 3) 96
9.9.3.3 Enabling Device with Manual/Auto Switch (Category 3) 97
9.9.3.4 Highest Risk Reduction (Category 4) 99

10 Design Requirements - Logic Devices 100

10.1 General ... 100
10.1.1 Design Requirements ... 100
10.1.2 Design Considerations .. 100
10.1.2.1 Safety Interface Module General Information 100
10.1.2.2 Tampering / Defeat ... 100
10.1.2.3 Failure Modes .. 101
10.1.2.4 Reset Function of the Safety Circuit 101

10.1.3 Application Examples ... 101
11 Design Requirements – Output Devices (MPCE) .. 101
 11.1 Relays and Contactors .. 101
 11.1.1 Design Requirements ... 101
 11.1.2 Design Considerations .. 101
 11.1.2.1 Tampering / Defeat .. 102
 11.1.2.2 Failure Modes ... 102
 11.1.3 Application Examples .. 102
 11.1.3.1 Lowest Risk Reduction (Category 1) ... 102
 11.1.3.2 Low / Intermediate Risk Reduction (Category 2) 103
 11.1.3.3 Intermediate / High Risk Reduction (Category 3) 104
 11.1.3.4 Highest Risk Reduction (Category 4) ... 105
 11.2 Power Drive Systems for Safe Torque Off ... 105
 11.2.1 Design Requirements ... 105
 11.2.2 Design Considerations .. 105
 11.2.2.1 General Information ... 106
 11.2.3 Application Examples .. 107
 11.2.3.1 Lowest Risk Reduction (Category 1) ... 107
 11.2.3.2 Intermediate / High Risk Reduction (Category 3) 109
 11.2.3.3 Highest Risk Reduction (Category 4) ... 111
 11.3 Pneumatic Systems ... 113
 11.3.1 Design Requirements ... 113
 11.3.2 Design Considerations .. 113
 11.3.3 Application Examples .. 113
 11.3.3.1 Supply Circuit .. 113
 11.3.3.2 Exhaust (Blocking, Dump) Valve .. 114
 11.3.3.3 Directional Valve Selection ... 122
 11.3.3.4 Spring Return Blocking and Pilot Operated Check Valves 130
 11.3.3.5 Flow Controls ... 139
 11.3.3.6 Rod Locks and Brakes .. 142
 11.3.3.7 143
 11.3.3.8 Velocity Fuse ... 143
 11.4 Hydraulic Systems .. 144
 11.4.1 Design Requirements ... 144
 11.4.2 Design Considerations .. 144
 11.4.3 Application Examples .. 144
 11.4.3.1 Dump and Blocking fluid to the hazardous motion 144
 11.4.3.2 Directional Valve Selection .. 149
 11.4.3.3 Spring Return Blocking and Pilot Operated Check Valves 154
 11.4.3.4 Counter Balance Valves ... 163
 11.4.3.5 Flow Controls ... 164
 11.4.3.6 Rod Locks and Rod Brakes ... 165
 11.5 Velocity Fuse ... 166
 12 Validation ... 167
INFORMATIVE ANNEXES

Annex A – Symbols .. 168
Annex B – Performance Levels and Safety-Related Block Diagrams 173
Annex C – Categories and How to Make a Selection ... 179
Annex D – Section 1: Mean Time to Failure, Dangerous (MTTF₀) .. 185
Annex D – Section 2: Diagnostic Coverage ... 190
Annex D – Section 3: Estimating the Common Cause Failure (CCF) 194
Annex E – Calculation Aids for Determination of SRP/CS PFH₀ & PL 195
Annex F – Analysis of Circuit Considerations .. 204
Annex G – Failures, Systemic .. 209
Annex H – General Overview of Valves .. 211
Annex I – Performance of the Safety-Related Function(s) (Overview) 215
Annex J – Safety-Related Performance .. 217
Annex K – External Device Monitoring by the Safety-Related Function 219
Annex L – Validation Tools for Mechanical Systems ... 221
Annex M – Validation Tools for Pneumatic Systems ... 224
Annex N – Validation Tools for Hydraulic Systems ... 231
Annex O – Validation Tools for Electrical Systems ... 237
Foreword (Not a normative part of ANSI B11.26-2018)

This American National Standard was first developed as ANSI Technical Report B11.TR6 and published in 2010. The B11 Accredited Standards Committee agreed to a revision as American National Standard ANSI B11.26 in order to address the dynamic state of ongoing international and national/regional standard revisions regarding functional safety. Given the advances in technologies and the proliferation of risk assessment as the foundational process for safety designs, it was essential for the B11 ASC to approve further committee work to improve the understanding of electrical, pneumatic and hydraulic safety circuits as well as how ISO 13849 relates to this topic. The primary attributes of this new B11.26 standard are the detailed schematic diagrams, the “Circuit Analysis Tables,” and the detailed annexes for understanding performance levels and category block diagrams as outlined in ISO 13849-1. The intent is to clarify and provide direction for functional safety applications in current and future equipment installations. These detailed generic (non vendor-specific) schematic diagrams are based on actual applications that have been successfully implemented in commerce.

The B11.26 Subcommittee began with current industrial circuit applications and provided many examples of common solutions in use at the time of creating this document. It is important to understand that there are many ways to fulfill a given engineering requirement and the examples only present one option. These examples are not normative, nor intended to limit innovation or the advancement of technology.

ANSI B11.26 illustrates safety control circuit design concepts used to realize safety functions. These functions reduce risks identified by a risk assessment. The following example circuits, explanations, and minimum fault exclusions are for educational purposes and do not contain complete information on electrical, fluid power, and mechanical design requirements. Substitutions, additions, or changes to the circuits, components, safety modules, or engineering control – devices should be thoroughly researched and examined as to the extent of the impact on the integrity, reliability, and the level of performance of the safety functions. The designer should refer to relevant standards, regulations, and codes to address the installation and safety requirements.

Industry users expressed the desire that example circuits be depicted in a NEMA format. To provide clarity and enhance understanding, the writing subcommittee created symbols for safety components that previously did not exist. These new symbols distinguish safety-rated components from their non-safety-rated counterparts such as emergency stops and forced guided relays. This document also identifies the relationship between risk assessment (ANSI B11.0) and control circuit reliability, including the use of ISO 13849.

Inquiries with respect to the application or the substantive requirements of this standard, and suggestions for its improvement, are welcomed and should be sent to B11 Standards, Inc., POB 690905, Houston, TX 77269, Attention: B11 Secretariat.
This standard was prepared by the B11.26 Subcommittee, processed and submitted for ANSI approval by the B11 Accredited Standards Committee on Safety Standards for Machines. Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time this standard was approved as an American National Standard, the ANSI B11 Accredited Standards Committee was composed of the following member organizations:

Alan Metelsky, Chairman
Anne Mathias, PE, Vice-Chairman
David Felinski, Secretary

Organizations Represented

AHT Insurance
Aluminum Extruders Council
American Society of Safety Professionals
Association For Manufacturing Technology
The Boeing Company
Bridgestone
Bureau Veritas
Canadian Standards Association
Deere & Co.
Euchner
Exponent
FDR Safety
General Motors Corporation
Grantek
Komatsu America Industries
Liberty Mutual
MAG Automotive
Metal Powder Industries Federation
National Institute for Occupational Safety & Health
Occupational Safety & Health Administration
Omrton Scientific Technologies Incorporated
Packaging Machinery Manufacturers Institute
Pilz Automation Safety, LP
Plastics Industry Association
Precision Metalforming Association
Presence-sensing Device Manufacturers Assoc.
Robotic Industries Association
Rockwell Automation
Safe-T-Sense
SICK, Inc.
Sub-Zero Group
Toyota Motor Manufacturing North America

Name of Representative

Delegate
John Russell, PE, CSP
Mel Mitchell
Bruce Main, PE, CSP
Russ Bensman
Don Nelson
Kenji Furukawa
David Natalizia
Andrea Holbeche, P.Eng
Tony Beeth
Mark Witherspoon
Steven Andrew, PE
Mike Taubitz
Mike Douglas
Jeff Winter, FS Eng
George Schreck
Stan Brubaker, CSP
Erik Carrier
Dennis Cloutier, CSP
Richard Current, PE
Ken Stevanus
Frank Webster
Charles (Fred) Hayes
Doug Sten, PhD, CSP
Megan Hayes
Jim Barrett, Jr. PhD
Jim Kirton
Carole Franklin
Pat Barry
Chris Gerges
Chris Soranno, FS Exp
Mike McCullion
Chad Pierce, CSP
Barry Boggs

Alternate
George Forrester
Scott Burkett
Anne Mathias, PE
Alan Metelsky
Steven Thomas
Joey Hinson
Walter Veugen
Scott Winter
Henry Toal
Torsten Skujins
Joe Wolksberger
Steven Kapucinski
Patric Brown
James Landowski
Julie Thompson
Doug Watts
Teresa Stillman
James McManus
Tina Hull
Tom Egan
Michael Beerman / Lee Burk
Steve Petrakis

Michael Carlson
Jeffrey Fryman
Michael Poynter
Federico Badillo
Mark Nehrkorn, FS Exp
Scott Lollar
James Fritz
Introduction & Overview of the ANSI B11 Series of Machinery Safety Standards

Introduction
The main purpose of every machine tool is to process materials. Inadvertent interference with, or accidental misdirection of the released energy during production, maintenance, commissioning and de-commissioning can result in injury.

The purpose of the ANSI B11 series of machinery safety standards is to devise and propose ways to eliminate or minimize risks of the potential hazards associated with the required tasks. This can be accomplished either by an appropriate machine design or by restricting personnel or other individuals’ access to hazard zones, and by devising work procedures to minimize personnel exposure to hazardous situations. This is the essence of the ANSI B11 series of safety standards. This standard recognizes that zero risk does not exist and cannot be attained. However, a good faith approach to risk assessment and risk reduction should achieve an acceptable risk level.

Organization and Application of B11 Documents
The B11 standards and technical reports can be associated with the ISO “type A-B-C” structure as described immediately below, and as shown in Figure 1.

- **Type-A standards** (basis standards) give basic concepts, principles for design, and general aspects that can be applied to machinery;
- **Type-B standards** (generic safety standards) deal with one or more safety aspects or one or more types of engineering controls that can be used across a wide range of machinery;
- **Type-C standards** (machinery safety standards) deal with detailed safety requirements for a particular machine or group of machines.

The B11.0 standard on general safety requirements common to ANSI B11 machines is primarily a “Type-A” standard in that it applies to a broad array of machines and contains very general requirements. However, in many areas it also contains very specific requirements. B11.19, B11.20, B11.21, B11.25, B11.26, as well as the entire B11 series of Technical Reports are all typical “Type-B” documents addressing general safety elements that can be used across a wide range of machinery (such as B11.19 and B11.26) or as a standard when combining machines (B11.20). The B11 series of Technical Reports are informative documents that may be generally applied to many different machines, and as such would fall into the “Type-B” category. The machine-specific ("Type-C") B11 standards contain detailed safety requirements for a particular machine or group of machines (such as this standard). The Type-A B11.0 and the Type-C (machine-specific) B11 standards are intended to be used concurrently by the supplier and user of machines. When a Type-C standard deviates from one or more provisions dealt with by this standard or by a Type-A standard, the Type-C standard requirement generally takes precedence. Any deviation in conforming to a requirement of any standard should be carefully evaluated and based on a documented risk assessment.

Figure 1: Organization of the B11 Series of Documents
ANSI B11.26 applies when a control system is used as a risk reduction measure. The responsibility for reducing these risks to an acceptable level is divided between the equipment supplier, the equipment modifier, the equipment user and its operating personnel, as addressed in Figure 2. This Figure provides the structure of a typical type-C standard and in particular, the responsibilities of and requirements for the supplier, modifier, user, and the user personnel. It is provided so the reader can better understand the responsibilities for reducing risk, since this type-B standard applies when a control system is used as a risk reduction measure. Parenthetical numbers denote the particular clause/subclause of the type-C standard.

Figure 2: Typical clause layout of B11 base standards showing the various responsibilities

- **SUPPLIER**: The early stages of a project present the greatest opportunity to determine project requirements and to anticipate and eliminate hazards and hazardous situations.
- **MODIFIER**: The entity (OEM, Supplier, or the expert) in that discipline responsible for creating or modifying the system, machinery or equipment, shall have all relevant design standards documentation. The entity shall begin by working with the end user to list all tasks to achieve an appropriate comprehensive task list base of the “context of use” for the system, machine or equipment.
- **USER**: The company representatives (can be from many disciplines) where the system, machinery or equipment will reside during its productive life. They should engage in participating or reviewing the risk assessment and what will be necessary for a final safety buy-off at the final location.
- **PERSONNEL**: The group “at risk” from any hazards or hazardous situation presented by the system, machinery, or equipment while performing their tasks to achieve the company’s desired productive life. This would include at a minimum, operators, maintenance personnel for both planned and unplanned maintenance, housekeeping and safety representatives. This group would evaluate the engineering controls and administrative controls (see ANSI B11.19).
As of the date of approval of this standard, the ANSI B11 series of American National Standards and Technical Reports on machinery safety consisted of the following documents shown in the list below. The user should check a licensed reseller such as ANSI (www.ansi.org) for the current versions of any of these documents. All archival / historical versions of the documents are available at www.b11standards.org.

List of the ANSI B11 Series of Safety Standards and Technical Reports

<table>
<thead>
<tr>
<th>#</th>
<th>SHORT TITLE / TOPIC</th>
<th>YEAR</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11.0</td>
<td>Safety of Machinery</td>
<td>2015</td>
<td>A</td>
</tr>
<tr>
<td>B11.1</td>
<td>Mechanical Power Presses</td>
<td>2009 (R14)</td>
<td>C</td>
</tr>
<tr>
<td>B11.2</td>
<td>Hydraulic & Pneumatic Power Presses</td>
<td>2013</td>
<td>C</td>
</tr>
<tr>
<td>B11.3</td>
<td>Power Press Brakes</td>
<td>2012</td>
<td>C</td>
</tr>
<tr>
<td>B11.4</td>
<td>Shears</td>
<td>2003 (R13)</td>
<td>C</td>
</tr>
<tr>
<td>B11.5</td>
<td>Ironworkers</td>
<td>1988 (R13)</td>
<td>C</td>
</tr>
<tr>
<td>B11.6</td>
<td>Manual Turning Machines w/ or without Auto Control</td>
<td>2001 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.7</td>
<td>Cold Headers and Cold Formers</td>
<td>1995 (R15)</td>
<td>C</td>
</tr>
<tr>
<td>B11.8</td>
<td>Manual Milling, Drilling, & Boring Machines</td>
<td>2001 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.9</td>
<td>Grinding Machines</td>
<td>2010 (R15)</td>
<td>C</td>
</tr>
<tr>
<td>B11.10</td>
<td>Sawing Machines</td>
<td>2003 (R15)</td>
<td>C</td>
</tr>
<tr>
<td>B11.11</td>
<td>Gear and Spline Cutting Machines</td>
<td>2001 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.12</td>
<td>Roll Forming and Roll Bending Machines</td>
<td>2005 (R15)</td>
<td>C</td>
</tr>
<tr>
<td>B11.13</td>
<td>Single & Multiple-Spindle Automatic Bar and Chucking Machines</td>
<td>1992 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.14</td>
<td>Coil Slitting Machines (combined into B11.18)</td>
<td>Withdrawn</td>
<td>---</td>
</tr>
<tr>
<td>B11.15</td>
<td>Pipe, Tube and Shape Bending Machines</td>
<td>2001 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.16</td>
<td>Powder / Metal Compacting Presses</td>
<td>2014</td>
<td>C</td>
</tr>
<tr>
<td>B11.17</td>
<td>Horizontal Hydraulic Extrusion Presses</td>
<td>2004 (R15)</td>
<td>C</td>
</tr>
<tr>
<td>B11.18</td>
<td>Machines Processing or Slitting Coiled or Non-Coiled Metal</td>
<td>2006 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.19</td>
<td>Performance Requirements for Risk Reduction Measures (Safeguarding)</td>
<td>2010</td>
<td>B</td>
</tr>
<tr>
<td>B11.20</td>
<td>Integration of Machinery into Systems</td>
<td>2017</td>
<td>B</td>
</tr>
<tr>
<td>B11.21</td>
<td>Machine Tools Using Lasers for Processing Materials</td>
<td>2006 (R12)</td>
<td>B</td>
</tr>
<tr>
<td>B11.22</td>
<td>Turning Centers and Automatic Numerically Controlled Turning Machines</td>
<td>2002 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.23</td>
<td>Machining Centers & CNC Milling, Drilling & Boring Machines</td>
<td>2002 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.24</td>
<td>Transfer Machines</td>
<td>2002 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.25</td>
<td>Large Machines</td>
<td>2015</td>
<td>B</td>
</tr>
<tr>
<td>B11.26</td>
<td>Functional Safety for Equipment</td>
<td>2018</td>
<td>B</td>
</tr>
<tr>
<td>B11.27</td>
<td>Electro-Discharge Machines</td>
<td>201x</td>
<td>C</td>
</tr>
<tr>
<td>B11.TR1</td>
<td>Ergonomics</td>
<td>2016</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR2</td>
<td>Metal Working Fluids</td>
<td>1997</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR3</td>
<td>Risk Assessment / Risk Reduction</td>
<td>2000 (R15)</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR4</td>
<td>Selection of Programmable Electronic Systems (PES/PLC)</td>
<td>2004 (R15)</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR5</td>
<td>Noise Measurement</td>
<td>2006</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR6</td>
<td>Safety Control Systems for Machines</td>
<td>2010</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR7</td>
<td>Integration of Lean and Safety</td>
<td>2007 (R17)</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR8</td>
<td>Inspection and Maintenance of Risk Reduction Measures</td>
<td>201x</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR9</td>
<td>Guidance on Machinery Safety Cybersecurity Aspects</td>
<td>201x</td>
<td>B</td>
</tr>
<tr>
<td>ANSI/ISO 12100</td>
<td>Safety of machinery (identical adoption of ISO 12100-2010)</td>
<td>2012</td>
<td>A</td>
</tr>
</tbody>
</table>
American National Standard for Machines—

1 Scope
This American National Standard provides both requirements and guidance for the implementation of safety-related control functions (functional safety) as they relate to electrical, electronic, pneumatic, hydraulic, and mechanical components of control systems.

Informative Note 1: This document includes a large number of detailed schematic circuit diagrams that are provided as EXAMPLE circuits only, representing common solutions in use at the time of creating this document. It is important to understand that there are many ways to fulfill a given engineering requirement and the examples only present one option. These examples are not normative, nor intended to limit innovation or the advancement of technology.

Informative Note 2: This document references ISO 13849-2 – Validation as part of an annex.

Informative Note 3: This document is not intended to address the programming or software of programmable electronic systems/programmable electronic devices (PES/PED). See ANSI B11.TR4.

Informative Note 4: See also, clause 4 on “How to use this standard.”

2 References
The following normative documents contain provisions that, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements subject to this American National Standard should consider applying the most recent editions of the normative documents listed below. This standard is intended to be used in conjunction with the following American National Standards:

2.1 Normative References
ANSI B11.0 – 2015, Safety of Machinery
ANSI / NFPA 79 – 2018, Electrical Standard for Industrial Machinery
ANSI / ASSE Z244.1-2016, Control of Hazardous Energy – Lockout, Tagout and Alternative Methods
SAE 100Rx, Hydraulic Hose and hose fittings

2.2 Informative References
ANSI B11.TR3 – 2000 (R16), Risk Assessment and Risk Reduction – A guide to estimate, evaluate and reduce risks associated with machine tools (see ANSI B11.0)
ANSI B11.TR4 – 2004 (R16), Selection of Programmable Electronic Systems (PES/PLC) for Machine Tools
ASME Boiler and Pressure Vessel Code Section VIII Division 1.
ISO 13849-1:2015, Safety of machinery – Safety-related part of control systems – Part 1: General Principles for Design
ISO 4413 – 2010, Hydraulic fluid power – General rules and safety requirements for systems and their components
ISO 4414 – 2010, Pneumatic fluid power – General rules and safety requirements for systems and their components
ISO 1219-1: 2012, Fluid power systems and components – Graphical symbols and circuit diagrams
Part 1: Graphical symbols for conventional use and data-processing applications
IEC 60204-1 – Safety of electrical equipment of machinery used for general electrical safety aspects
IEC 61508 Parts 1-7 – Functional safety of E/E/PE safety-related systems used for the design of complex subsystems
IEC 62061 - Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems
ISO 8573 2001 - Compressed air -- Part 1: Contaminants and purity classes
IEC 60947-5-8:2006 – Low voltage switchgear and control gear – Part 5-8: Control circuit devices and switching elements – Three-position enabling switches