
ANSI Technical Report for Machines –

Risk assessment and risk reduction –
A guide to estimate, evaluate and reduce
risks associated with machine tools

Registered by ANSI: NOVEMBER 5, 2000
Reaffirmed: 18 JANUARY 2015

Secretariat and Standards Developing Organization:

B11 Standards, Inc.
POB 690905
Houston, TX 77269

Copyright; All rights reserved

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America
ABSTRACT

This technical report is part of the ANSI B11 series of technical reports and standards pertaining to the design, construction, care and use of machine tools. This technical report defines a method for conducting a risk assessment and risk reduction for machine tools, provides some guidance in the selection of appropriate protective measures (safeguarding) to achieve tolerable risk, and describes the risk assessment and risk reduction responsibilities of both the machine tool supplier and user. This method requires gathering the appropriate information, determining the limits of the machine, identifying tasks and hazards over the lifecycle of the machine using a task-based approach, estimating risk associated with the task-hazard combinations, reducing risk according to a prioritized procedure, and documenting the results. The risk reduction process is not completed until tolerable risk is achieved. Flowcharts illustrate the process. Examples of tasks and hazards are included in the document. This technical report explicitly recognizes that zero risk is virtually unattainable. It is intended for use on all new or modified machines and equipment designs and processes. The user may also utilize it to assist with risk assessment and risk reduction for existing tasks and hazards.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 References</td>
<td>1</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Overview of Risk Assessment</td>
<td>3</td>
</tr>
<tr>
<td>5 Determining the Limits of the Machine or System</td>
<td>7</td>
</tr>
<tr>
<td>6 Task and Hazard Identification</td>
<td>7</td>
</tr>
<tr>
<td>7 Risk Estimation</td>
<td>7</td>
</tr>
<tr>
<td>8 Risk Reduction</td>
<td>10</td>
</tr>
<tr>
<td>9 Documentation</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1 Risk Assessment and Risk Reduction Process</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2 Relationship Between Supplier and User</td>
<td>6</td>
</tr>
<tr>
<td>Table 1 Risk Estimation Matrix</td>
<td>10</td>
</tr>
<tr>
<td>ANNEXES:</td>
<td></td>
</tr>
<tr>
<td>A Examples of Hazards and Hazardous Situations</td>
<td>14</td>
</tr>
<tr>
<td>B Sample Test Report Form</td>
<td>16</td>
</tr>
<tr>
<td>C Application of B11.TR3 to the B11 machine tool safety standards</td>
<td>17</td>
</tr>
<tr>
<td>D Report on Field Test Risk Assessment Results</td>
<td>18</td>
</tr>
</tbody>
</table>
FOREWORD

The B11 Accredited Standards Committee (Machine Tool Safety Standards) of the American National Standards Institute formed a subcommittee to develop a technical report to provide guidance for the application of risk assessment principles to machine tools during the design and construction, installation, use and care phases. The B11.TR3 Subcommittee operates under the auspices of the ANSI B11 ASC and its accredited Standards Developing Organization – The Association For Manufacturing Technology.

There are four annexes at the end of this technical report that are used for clarification, illustration and general information. Annex A lists several example hazards and hazardous situations; Annex B contains a sample test form; Annex C presents a flowchart depicting how B11.TR3 and the B11 series of machine tool safety standards are integrated; and Annex D is a report of the results from a field test using a late draft of this document and conducted to test its functionality.

Publication of this ANSI Technical Report has been approved and recommended to ANSI for registration by The Association For Manufacturing Technology, an ANSI-Accredited Standards Developing Organization. This document is registered as a Technical Report in the B11 series of publications according to the Procedures for the Registration of ANSI Technical Reports and the ANSI B11 ASC Operating Procedures. This document is not an American National Standard and the material contained herein is not normative in nature.

Comments on the content of this document or suggestions for improvement are welcome. They should be sent to: B11 Standards, Inc., POB 690905, Houston, TX 77269, Attention: Secretariat.

The B11 Accredited Standards Committee is composed of the following member organizations:

John W. Russell, Chairman
Gary D. Kopps, Vice-Chairman
David A. Felinski, Secretary

<table>
<thead>
<tr>
<th>Organizations Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Industries Association of America, Inc.</td>
<td>Robert Eaker (D)</td>
</tr>
<tr>
<td>Alliance of American Insurers</td>
<td>John W. Russell (D)</td>
</tr>
<tr>
<td>Aluminum Extruders Council</td>
<td>Jeff Dziki (D)</td>
</tr>
<tr>
<td>American Boiler Manufacturers Association</td>
<td>Russell N. Mosher (A)</td>
</tr>
<tr>
<td>American Insurance Service Group</td>
<td>Henry S. Pankiw (D)</td>
</tr>
<tr>
<td>American Institute of Steel Construction</td>
<td>Thomas Schlafly (D)</td>
</tr>
<tr>
<td>American Ladder Institute</td>
<td>Ron Pietrzak (A)</td>
</tr>
<tr>
<td>American Society of Safety Engineers</td>
<td>Bruce Main (D)</td>
</tr>
<tr>
<td>AMT – The Association For Manufacturing Technology</td>
<td>Russell Bensman (D)</td>
</tr>
<tr>
<td>Can Manufacturers Institute</td>
<td>Ord L. Campbell (D)</td>
</tr>
<tr>
<td>Deere and Company</td>
<td>Gary D. Kopps (D)</td>
</tr>
<tr>
<td>Forging Industry Association</td>
<td>John W. Commet (D)</td>
</tr>
<tr>
<td>General Motors Corporation</td>
<td>Michael Taubitz (D)</td>
</tr>
<tr>
<td>Graphic and Product Identification Manufacturers Assn.</td>
<td>Donald Root (D)</td>
</tr>
<tr>
<td>International Association of Machinists & Aerospace Workers, District Lodge 142</td>
<td>Jim Soptic</td>
</tr>
<tr>
<td>International Union, United Automobile, Aerospace and Agricultural Implement Workers of America (UAW)</td>
<td>Jim Howe (D)</td>
</tr>
</tbody>
</table>
Machinery Dealers National Association Dan Strand (D) Sid Lieberstein (A)
Metal Building Manufacturers Association Charles M. Stockinger (D) Charles E. Praeger (A)
Metal Powder Industries Federation Dennis Cloutier (D) Donald White (A)
National Electrical Manufacturers Association Larry Miller (D) Frank Kitzantides (A)
National Fluid Power Association June VanPinsker (D)
National Tooling and Machining Association Andy Levine (D) Richard R. Walker (A)
Precision Metallforming Association Christopher E. Howell (D) Christie Carmigiano (A)
Presence Sensing Device Manufacturers Association James Kirton (D) Barry Stockton (A)
Rubber Manufacturers Association Kim Weber (D) Robert Walker (A)
Sheet Metal and Air Conditioning Contractors' National Association Inc. Thomas J. Meighen (D) James T. Strother (A)
Steel Service Center Institute Bob Carragher (D) Nicole LaPorte (A)
Tooling and Manufacturing Association Jeffery W. Hayes (D) Bruce C. Braker (A)
Unified Abrasives Manufacturers' Association, Bonded Division Charles S. Conant (D) James J. Wherry (A)
U.S. Department of the Navy (NAVSEA) Various delegates depending on the Standard

Subcommittee B11.TR3, at the time this technical report was approved, had the following members:

Bob Andres, Chairman OSHEX/ESA ™
David A. Felinski, Rep. B11 Secretariat AMT
John F. Bloodgood, Secretary JFB Enterprises
Sam Boytor Fox Controls
Thomas L. Bradburn General Motors Truck Group
Wayne Christensen Institute for Safety Through Design
Dennis Cloutier Cincinnati Incorporated
Al Cooper Applied Safety Technology
Michael J. Douglas General Motors NAO
Robert Eggleston Drion Safety Services
Howard Elwell Elwell and Associates
John Etherton NIOSH
Alcmene Haloftis OSHA
Jim Howe United Auto Workers International Union
Edward Kornas General Motors
Don Lawson Pilz Automation Safety, L.P.
Bruce W. Main Design Safety Engineering
Fred Manuele Hazards, Limited
Larry Morel Delphi Automotive Systems
Larry D. Munson Universal Instruments
John M. Piampiano Eastman Kodak
Richard Sauger OSHA
John Steinmann Scientific Technologies
Barry Stockton HighTech Consulting
Michael Taubitz General Motors
Jeffery H. Warren The Warren Group
Jim Washam OSHA
David Withrow Withrow Industries
INTRODUCTION

The purpose of the ANSI B11 series of machine tool safety standards is to devise and propose ways to minimize risks associated with existing and potential hazards. This can be accomplished by an appropriate machine design, by restricting personnel access to hazardous areas or by devising work procedures to minimize personnel exposure to hazardous situations.

This technical report provides guidance for machine suppliers and users to analyze and reduce risks associated with hazards generated by machines and associated equipment where it is possible for persons to come in contact with or otherwise be affected by these hazards. Its use is intended for all new or modified machines and equipment designs and processes, but the user may also use it to assist with risk assessment and risk reduction for existing tasks and hazards – appreciating that many engineered safeguards are often not feasible to retrofit existing equipment.

This technical report recognizes that zero risk does not exist and cannot be attained. However, a good faith approach to risk assessment and risk reduction as described in this guide should achieve a tolerable risk level.

Traditional hazard analysis has long advocated the identification and evaluation of all hazards, but no methodology has existed within the B11 series of machine tool safety standards to accommodate hazard analysis associated with reasonably anticipated tasks, such as unplanned maintenance, jam clearing, or minor tool changes. The process described in this guide proactively recognizes risks associated with all equipment tasks so that safety related designs and modifications are made while providing for improved productivity and maintainability.

Because these tasks can be so diverse, the risk assessment process can best be conducted using a team of knowledgeable and affected persons.
Risk assessment and risk reduction –
A guide to estimate, evaluate and reduce risks associated with machine tools

1 Scope
This ANSI Technical Report provides the procedures and methods to assess the risks associated with the design, construction, care and use of machine tools as included in the B11 series of machine tool safety standards. It serves as a guideline for suppliers and users of machine tools, providing a framework and procedure to identify tasks and hazards, and to estimate, evaluate, reduce and document the risks associated with these hazards under the various conditions of use of that machine or system.

2 References
IEC 812: 1985, Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA)
IEC 1025: 1990, Fault tree analysis (FTA)
ISO 14121: 1999, Safety of machinery – Principles for risk assessment
MIL STD 882D: 2000, Systems safety program requirements
ANSI/RIA R15.06: 1999, Industrial robots and robot systems – Safety requirements

3 Definitions
3.1 design: To plan and develop the [machine] to meet the intended purpose and function during its lifecycle.
3.2 guard: Barrier that prevents entry into a hazard area.
3.3 harm: Physical injury or damage to health of people.
 NOTE: This may be a result of direct interaction with the [machine], or indirectly as a result of damage to property or to the environment.
3.4 hazard: A potential source of harm.
3.5 hazard area (zone): An area or space that poses an immediate or impending hazard.
3.6 hazardous situation: A circumstance in which a person is exposed to a hazard(s).
 NOTE: A hazardous situation is also referred to as a task/hazard pair (combination).
3.7 intended use (of a machine): The use for which a machine is suited according to the information provided by the supplier or which is deemed usual according to its design, construction and function.
 NOTE: Intended use also involves compliance with the supplier’s instructions, which should take into account reasonably foreseeable misuse. The intended use may be determined by the user.
3.8 lifecycle (of a machine): The phases of a machine including:
 – design and construction;
 – transport and commissioning; re–assembly, installation, initial adjustment, relocation;
 – use, (e.g., setting, teaching/programming or process changeover, operation), and care (cleaning, trouble shooting [fault finding], maintenance [planned and unplanned]);
 – de-commissioning, dismantling and, as far as safety is concerned, disposal.