Radiation Protection at Research Reactor Facilities

An American National Standard
Designation of this document as an American National Standard attests that the principles of openness and due process have been followed in the approval procedure and that a consensus of those directly and materially affected by the standard has been achieved.

This standard was developed under the procedures of the Standards Committee of the American Nuclear Society; these procedures are accredited by the American National Standards Institute, Inc., as meeting the criteria for American National Standards. The consensus committee that approved the standard was balanced to ensure that competent, concerned, and varied interests have had an opportunity to participate.

An American National Standard is intended to aid industry, consumers, governmental agencies, and general interest groups. Its use is entirely voluntary. The existence of an American National Standard, in and of itself, does not preclude anyone from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard.

By publication of this standard, the American Nuclear Society does not insure anyone utilizing the standard against liability allegedly arising from or after its use. The content of this standard reflects acceptable practice at the time of its approval and publication. Changes, if any, occurring through developments in the state of the art, may be considered at the time that the standard is subjected to periodic review. It may be reaffirmed, revised, or withdrawn at any time in accordance with established procedures. Users of this standard are cautioned to determine the validity of copies in their possession and to establish that they are of the latest issue.

The American Nuclear Society accepts no responsibility for interpretations of this standard made by any individual or by any ad hoc group of individuals. Inquiries about requirements, recommendations, and/or permissive statements (i.e., “shall,” “should,” and “may,” respectively) should be sent to the Scientific Publications and Standards Department at Society Headquarters. Action will be taken to provide appropriate response in accordance with established procedures that ensure consensus.

Comments on this standard are encouraged and should be sent to Society Headquarters.

Published by the

American Nuclear Society
555 North Kensington Avenue
La Grange Park, Illinois 60526 USA

This document is copyright protected.

Copyright © 2016 by American Nuclear Society. All rights reserved.

Any part of this standard may be quoted. Credit lines should read “Extracted from American National Standard ANSI/ANS-15.11-2016 with permission of the publisher, the American Nuclear Society.” Reproduction prohibited under copyright convention unless written permission is granted by the American Nuclear Society.

Printed in the United States of America
Inquiry Requests

The American Nuclear Society (ANS) Standards Committee will provide responses to inquiries about requirements, recommendations, and/or permissive statements (i.e., “shall,” “should,” and “may,” respectively) in American National Standards that are developed and approved by ANS. Responses to inquiries will be provided according to the Policy Manual for the ANS Standards Committee. Nonrelevant inquiries or those concerning unrelated subjects will be returned with appropriate explanation. ANS does not develop case interpretations of requirements in a standard that are applicable to a specific design, operation, facility, or other unique situation only and therefore is not intended for generic application.

Responses to inquiries on standards are published in ANS’s magazine, *Nuclear News*, and are available publicly on the ANS Web site or by contacting the ANS Scientific Publications and Standards Department.

Inquiry Format

Inquiry requests shall include the following:

1. the name, company name if applicable, mailing address, and telephone number of the inquirer;
2. reference to the applicable standard edition, section, paragraph, figure, and/or table;
3. the purpose(s) of the inquiry;
4. the inquiry stated in a clear, concise manner;
5. a proposed reply, if the inquirer is in a position to offer one.

Inquiries should be addressed to:

American Nuclear Society
ATTN: Scientific Publications and Standards Department
555 N. Kensington Avenue
La Grange Park, IL 60526

or standards@ans.org
Foreword

(This foreword is not a part of American National Standard “Radiation Protection at Research Reactor Facilities,” ANSI/ANS-15.11-2016.)

In the fall of 1970, the American Nuclear Society Standards Committee established ANSI-15, Operation of Research Reactors, under the auspices of the N17 Consensus Committee, Research Reactors, Reactor Physics, Radiation Shielding, and Computational Methods, to provide needed standards for the operation, use, and regulation of research reactors. Since then, numerous standards have been developed, and several working groups have been established, among them ANSI-15.11.

Work on this standard began in November of 2013 and culminated in March of 2016 with approval by the Research and Advanced Reactor Consensus Committee. The current revision addresses applicable changes and provides directions on implementation, including meeting the objectives and principles of as-low-as-is-reasonably-achievable (ALARA) levels of radiation.

In preparing this standard, the intent has been to specify objectives that will achieve the following results:

1. Establish a comprehensive radiation protection program that deals with all matters involving radiation and radioactive materials at research reactors;
2. Limit exposures and releases to ALARA levels without seriously restricting the operation of existing reactors, inhibiting growth and upgrade, or discouraging the development of new research reactors;
3. Set a reasonably low activity level threshold, above which measurements will be required that will allow for the use of readily available instrumentation without resorting to extraordinary means.

In the process of creating standards with respect to existing and varied practices in many operating facilities, it is important to consider the following:

1. It is not intended that the standard be used as a demand model for backfitting purposes;
2. The standard can be a significant aid for existing and new owners or operators;
3. The standard can be helpful for a facility undergoing change or modification;
4. The standard’s considered use can assist in implementing regulatory requirements.

Prior to using the standard, individual facilities ought to carefully examine their license, permit, or other requirements for limiting conditions that might not be compatible with the
standard or new regulatory requirements and that might require change, amendment, or special authorization. Care also ought to be exercised in using appropriate units as might be specified by authorities.

The standard does not address certain conditions that do not occur or are known not to exist at research reactor facilities such as planned special exposures, facilities-specific public dose limits, and hot particle contamination. Individual facilities ought to address these issues, if needed, in their programs.

The family of American National Standards developed by ANS-15 for research reactors are the following:

- ANSI/ANS-15.7-1977 (R1986), “Research Reactor Site Evaluation” (withdrawn);
- ANSI/ANS-15.10-1994, “Decommissioning of Research Reactors” (withdrawn);
- ANSI/ANS-15.11-2016, “Radiation Protection at Research Reactor Facilities”;

This standard might reference documents and other standards that have been superseded or withdrawn at the time the standard is applied. A statement has been included in the “References” section that provides guidance on the use of references.

This standard does not incorporate the concepts of generating risk-informed insights, performance-based requirements, or a graded approach to quality assurance. The user is advised that one or more of these techniques could enhance the application of this standard.

This standard was prepared by the ANS-15.11 Working Group of the American Nuclear Society. The following members contributed to this standard:

S. R. Reese (Chair), Oregon State University
C. H. Bassett, U.S. Nuclear Regulatory Commission
D. R. Brown, National Institute of Standards and Technology
R. J. Dobey, University of Missouri
W. D. Frey, University of California at Davis
The Operations of Research Reactors Subcommittee had the following membership at the time of its approval of this standard:

D. S. O’Kelly (Chair), Idaho National Laboratory

A. Adams, U.S. Nuclear Regulatory Commission
M. J. Burger, Sandia National Laboratories
D. J. Cronin, University of Florida at Gainesville
L. P. Foyto, University of Missouri
S. Miller, Armed Forces Radiobiology Research Institute
M. K. Morrison, Idaho National Laboratory
T. J. Myers, Individual
D. M. Pinkston, Oak Ridge National Laboratory
S. R. Reese, Oregon State University
T. R. Schmidt, Individual
R. Strader, National Institute of Standards and Technology

The Research and Advanced Reactor Consensus Committee had the following membership at the time of its approval of this standard:

G. F. Flanagan (Chair), Oak Ridge National Laboratory
B. B. Bevard (Vice Chair), Oak Ridge National Laboratory
T. Newton (Vice Chair), National Institute of Standards and Technology

A. Adams, U.S. Nuclear Regulatory Commission
J. K. August, Southern Nuclear Operating Company
E. D. Blandford, University of New Mexico
R. E. Carter, Individual
L. P. Foyto, University of Missouri
A. Grenci, Chicago Bridge & Iron
D. R. Lawson, U.S. Department of Energy
M. A. Linn, Oak Ridge National Laboratory
J. Mazza, U.S. Nuclear Regulatory Commission
M. J. Memmott, Brigham Young University
M. K. Morrison, Idaho National Laboratory
T. J. Myers, Individual
D. S. O’Kelly, Idaho National Laboratory
M. W. Peres, Fluor Enterprises Inc.
S. R. Reese, Oregon State University
T. R. Schmidt, Individual
R. S. Turk, Individual
A. R. Veca, General Atomics
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Acronyms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Shall, should, and may</td>
<td>1</td>
</tr>
<tr>
<td>2.2 List of acronyms</td>
<td>1</td>
</tr>
<tr>
<td>2.3 Definitions</td>
<td>2</td>
</tr>
<tr>
<td>3 Program, policy, and organization</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Radiation protection program</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Management policy</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Radiation protection responsibilities</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Organizational relationships</td>
<td>9</td>
</tr>
<tr>
<td>3.5 Reviews and audits</td>
<td>9</td>
</tr>
<tr>
<td>4 Training</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Initial training</td>
<td>9</td>
</tr>
<tr>
<td>4.3 Retraining</td>
<td>10</td>
</tr>
<tr>
<td>5 Radioactive material control</td>
<td>10</td>
</tr>
<tr>
<td>5.1 Special nuclear material</td>
<td>10</td>
</tr>
<tr>
<td>5.2 Byproduct materials</td>
<td>10</td>
</tr>
<tr>
<td>5.3 Radioactive waste</td>
<td>10</td>
</tr>
<tr>
<td>5.4 Other radioactive material</td>
<td>11</td>
</tr>
<tr>
<td>6 Radiation monitoring</td>
<td>11</td>
</tr>
<tr>
<td>6.1 Radioactive effluent monitoring</td>
<td>11</td>
</tr>
<tr>
<td>6.1.1 Submersion nuclide effluents</td>
<td>11</td>
</tr>
<tr>
<td>6.1.2 Airborne radioactive materials (other than submersion nuclides)</td>
<td>11</td>
</tr>
<tr>
<td>6.1.3 Liquid effluents</td>
<td>11</td>
</tr>
<tr>
<td>6.2 Facility monitoring</td>
<td>12</td>
</tr>
<tr>
<td>6.2.1 Airborne radioactivity monitoring</td>
<td>12</td>
</tr>
<tr>
<td>6.2.2 Area radiation monitoring</td>
<td>12</td>
</tr>
<tr>
<td>6.2.3 Radioactive contamination monitoring</td>
<td>12</td>
</tr>
<tr>
<td>6.3 Personnel monitoring</td>
<td>13</td>
</tr>
<tr>
<td>6.4 Emergency radiation monitoring</td>
<td>13</td>
</tr>
<tr>
<td>7 Instrumentation</td>
<td>13</td>
</tr>
<tr>
<td>7.1 Instrument categories</td>
<td>13</td>
</tr>
<tr>
<td>7.2 Range and spectral response</td>
<td>13</td>
</tr>
<tr>
<td>7.3 Calibration</td>
<td>13</td>
</tr>
<tr>
<td>8 ALARA objectives, program, and audits</td>
<td>14</td>
</tr>
<tr>
<td>8.1 ALARA program</td>
<td>14</td>
</tr>
<tr>
<td>8.2 Facility design</td>
<td>14</td>
</tr>
<tr>
<td>8.2.1 Design objective</td>
<td>14</td>
</tr>
<tr>
<td>8.2.2 External radiation control design features</td>
<td>14</td>
</tr>
<tr>
<td>8.2.3 Contamination control design features</td>
<td>15</td>
</tr>
<tr>
<td>8.2.4 Radioactive effluent control</td>
<td>15</td>
</tr>
<tr>
<td>8.3 Facility operation</td>
<td>15</td>
</tr>
</tbody>
</table>
8.3.1 Operations dose objective... 15
8.3.2 Operations planning.. 15
8.3.3 Operations.. 16
8.4 Review and audit.. 16

9 Records.. 17

10 Emergency response and exposure guidelines.. 17
10.1 Response .. 17
10.2 Guidance on dose limits... 17

11 References 18

Appendices
Appendix A Controlled Area.. .. 20
Appendix B Outline of a Radiation Protection Program .. 21
Appendix C Review and Audit Guide .. 23
Appendix D Performance Quality Assurance Program ... 24
Appendix E Outline of an ALARA Program ... 25
Appendix F Control of Radiation Beams... 26
Appendix G Supplementary References... 28

Table
Table 1 Emergency response dose guidance ... 18
Radiation Protection at Research Reactor Facilities

1 Scope

This standard establishes the elements of a radiation protection program and the criteria necessary to provide an acceptable level of radiation protection for personnel at research reactor facilities and the public consistent with keeping exposures and releases as low as is reasonably achievable (ALARA).

2 Acronyms and definitions

2.1 Shall, should, and may

shall, should, and may: The word “shall” is used to denote a requirement; the word “should” is used to denote a recommendation; and the word “may” is used to denote permission, neither a requirement nor a recommendation.

2.2 List of acronyms

ALARA: as low as is reasonably achievable
ALI: annual limit on intake
DAC: derived air concentration
DAC-hour: derived air concentration-hour
ICRP: International Commission on Radiological Protection
ICRP 60: ICRP Publication 60
ICRP 103: ICRP Publication 103
ICRU: International Commission on Radiation Units and Measurements
LDE: lens dose equivalent
MQA: measurement quality assurance
NCRP: National Council on Radiation Protection and Measurements
NCRP 91: NCRP Report No. 91
NRC: U.S. Nuclear Regulatory Commission
NVLAP: National Voluntary Laboratory Accreditation Program
TEDE: total effective dose equivalent
TLD: thermoluminescent dosimeter