ACCEPTED INDUSTRY PRACTICE FOR INDUSTRIAL DUCT CONSTRUCTION

SECOND EDITION - AUGUST 2008

SMACNA

SHEET METAL AND AIR CONDITIONING CONTRACTORS’ NATIONAL ASSOCIATION, INC.
4201 Lafayette Center Drive
Chantilly, VA 20151-1209
www.smacna.org
FOREWORD

The Sheet Metal and Air Conditioning Contractors’ National Association, recognizing the popularity of this guide since it was first published in 1975, has sought to update the information it contains on the basis of the more recent editions of the Round and the Rectangular Industrial Duct Construction Standards of 1999 and 2004, but maintaining the narrower scope, table presentation and graphics of the original Accepted Industry Practice for Industrial Duct Construction.

This guide is a compilation of standards and construction techniques which have received wide acceptance for the fabrication and installation of ducts designed to convey air and gases, usually contaminated with particulates, fumes, vapors or corrosive aerosols.

Industrial duct is a broad classification of ductwork used in industry for many diverse applications, from air distribution and ventilation exhaust in Class 1 systems, to pneumatic conveying in Classes 2, 3 and 4, to conveying of industrial exhausts containing corrosive aerosols. These contaminated flows are usually conveyed at velocities in excess of 2,000 feet per minute and frequently at static pressures in excess of positive or negative 10 inch water gage. While there may sometimes appear to exist an overlap between industrial ventilation (Class 1) and HVAC applications in the under 10 inch wg category, closer inspection reveals marked differences in performance, maintenance and structural requirements between the two. Unfortunately, industrial ventilation duct is sometimes specified per SMACNA’s HVAC Duct Construction Standards, when perhaps specifying a industrial Class 1 system would result in a more satisfactory installation.

MAJOR CHANGES FROM THE PREVIOUS EDITION

- Created a new chapter structure somewhat similar to that in the Round and Rectangular Duct Construction Standards.
- Combined and reorganized sections of the 1st edition into the new chapter structure.
- For consistency, the material in chapters two and three was taken directly from the Round and Rectangular manuals.
- Created a new chapter four with all new duct selection tables, maintaining the format and style of the first edition, but consistent with the information in the Round and Rectangular manuals. Added many figures for seams and joints to complete the duct construction features of the manual.
- Added new chapters for Hangers and Supports, Fittings, Vents, Doors, and basic information on Stacks and Discharge Ducts.
- Updated the surface preparation guidance with the latest information from the Society for Protective Coatings (SSPC).
- Created a separate chapter of updated references and placed useful welding symbols into an Appendix.

SHEET METAL AND AIR CONDITIONING CONTRACTORS’ NATIONAL ASSOCIATION, INC.
INDUSTRIAL DUCT CONSTRUCTION
STANDARDS COMMITTEE

Mitchell Hoppe, Chairman
Melrose Metal Products, Inc.
Fremont, CA

John Gundlach
McKinstry Company
Seattle, WA

Michael Corrigan
Lyon Sheet Metal Works, Inc.
Saint Louis, Missouri

Blake L. Anderson, P.E.
Climate Engineers, Inc.
Cedar Rapids, IA

Jeff Lindell, P.E.
Sheet Metal Engineering, Inc.
Des Moines, IA

Ken Groeschel Jr., P.E.
Butters-Fetting Co., Inc.
Malone, Wisconsin

G. A. Navas, Staff Liaison
SMACNA, Inc.
Chantilly, VA

FORMER COMMITTEE MEMBERS AND OTHER CONTRIBUTORS

Wally E. Fizer,
Lexington, Kentucky

William Harbaugh
Houston, Texas

William Harmon
Westerville, Ohio

Arnold Holming
Milwaukee, Wisconsin

Harold A. Nepereny
Chantilly, Virginia

C. Stuart Perkins
Los Angeles, California

Michael G. Poja
Milwaukee, Wisconsin

Jack Puhl
St. Louis, Missouri

Norman White
Detroit, Michigan
NOTICE TO USERS
OF THIS PUBLICATION

1. DISCLAIMER OF WARRANTIES

a) The Sheet Metal and Air Conditioning Contractors’ National Association (“SMACNA”) provides its product for informational purposes.

b) The product contains “Data” which is believed by SMACNA to be accurate and correct but the data, including all information, ideas and expressions therein, is provided strictly “AS IS,” with all faults. SMACNA makes no warranty either express or implied regarding the Data and SMACNA EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE.

c) By using the data contained in the product user accepts the Data “AS IS” and assumes all risk of loss, harm or injury that may result from its use. User acknowledges that the Data is complex, subject to faults and requires verification by competent professionals, and that modification of parts of the Data by user may impact the results or other parts of the Data.

d) IN NO EVENT SHALL SMACNA BE LIABLE TO USER, OR ANY OTHER PERSON, FOR ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING, DIRECTLY OR INDIRECTLY, OUT OF OR RELATED TO USER’S USE OF SMACNA’S PRODUCT OR MODIFICATION OF DATA THEREIN. This limitation of liability applies even if SMACNA has been advised of the possibility of such damages. IN NO EVENT SHALL SMACNA’S LIABILITY EXCEED THE AMOUNT PAID BY USER FOR ACCESS TO SMACNA’S PRODUCT OR $1,000.00, WHICHEVER IS GREATER, REGARDLESS OF LEGAL THEORY.

e) User by its use of SMACNA’s product acknowledges and accepts the foregoing limitation of liability and disclaimer of warranty and agrees to indemnify and hold harmless SMACNA from and against all injuries, claims, loss or damage arising, directly or indirectly, out of user’s access to or use of SMACNA’s product or the Data contained therein.

2. ACCEPTANCE

This document or publication is prepared for voluntary acceptance and use within the limitations of application defined herein, and otherwise as those adopting it or applying it deem appropriate. It is not a safety standard. Its application for a specific project is contingent on a designer or other authority defining a specific use. SMACNA has no power or authority to police or enforce compliance with the contents of this document or publication and it has no role in any representations by other parties that specific components are, in fact, in compliance with it.

3. AMENDMENTS

The Association may, from time to time, issue formal interpretations or interim amendments, which can be of significance between successive editions.

4. PROPRIETARY PRODUCTS

SMACNA encourages technological development in the interest of improving the industry for the public benefit. SMACNA does not, however, endorse individual manufacturers or products.

5. FORMAL INTERPRETATION

a) A formal interpretation of the literal text herein or the intent of the technical committee or task force associated with the document or publication is obtainable only on the basis of written petition, addressed to the Technical Resources Department and sent to the Association’s national office in Chantilly, Virginia. In the event that the petitioner has a substantive disagreement with the interpretation, an appeal may be filed with the Technical Resources Committee, which has technical oversight responsibility. The request must pertain to a specifically identified portion of the document that does not involve published text which provides the requested information. In considering such requests, the Association will not review or judge products or components as being in compliance with the document or publication. Oral and written interpretations otherwise obtained from anyone affiliated with the Association are unofficial. This procedure does not prevent any committee or task force chairman, member of the committee or task force, or staff liaison from expressing an opinion on a provision within the document, provided that such person clearly states that the opinion is personal and does not represent an official act of the Association in any way, and it should not be relied on as such. The Board of Directors of SMACNA shall have final authority for interpretation of this standard with such rules or procedures as they may adopt for processing same.

b) SMACNA disclaims any liability for any personal injury, property damage, or other damage of any nature whatsoever, whether special, indirect, consequential or compensatory, direct or indirectly resulting from the publication, use of, or reliance upon this document. SMACNA makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

6. APPLICATION

a) Any standards contained in this publication were developed using reliable engineering principles and research plus consultation with, and information obtained from, manufacturers, users, testing laboratories, and others having specialized experience. They are
subject to revision as further experience and investigation may show is necessary or desirable. Construction and products which comply with these Standards will not necessarily be acceptable if, when examined and tested, they are found to have other features which impair the result contemplated by these requirements. The Sheet Metal and Air Conditioning Contractors’ National Association and other contributors assume no responsibility and accept no liability for the application of the principles or techniques contained in this publication. Authorities considering adoption of any standards contained herein should review all federal, state, local, and contract regulations applicable to specific installations.

b) In issuing and making this document available, SMACNA is not undertaking to render professional or other services for or on behalf of any person or entity. SMACNA is not undertaking to perform any duty owed to any person or entity to someone else. Any person or organization using this document should rely on his, her or its own judgement or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance.

7. REPRINT PERMISSION

Non-exclusive, royalty-free permission is granted to government and private sector specifying authorities to reproduce only any construction details found herein in their specifications and contract drawings prepared for receipt of bids on new construction and renovation work within the United States and its territories, provided that the material copied is unaltered in substance and that the producer assumes all liability for the specific application, including errors in reproduction.

8. THE SMACNA LOGO

The SMACNA logo is registered as a membership identification mark. The Association prescribes acceptable use of the logo and expressly forbids the use of it to represent anything other than possession of membership. Possession of membership and use of the logo in no way constitutes or reflects SMACNA approval of any product, method, or component. Furthermore, compliance of any such item with standards published or recognized by SMACNA is not indicated by presence of the logo.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

FOREWORD .. iii

INDUSTRIAL DUCT CONSTRUCTION STANDARDS COMMITTEE iv

NOTICE TO USERS OF THIS PUBLICATION .. v

TABLE OF CONTENTS ... vii

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION .. 1.1

1.2 MANUAL CONTENTS ... 1.1

CHAPTER 2 INDUSTRIAL DUCT APPLICATIONS

2.1 INTRODUCTION .. 2.1

2.2 DEFINITION OF INDUSTRIAL DUCT ... 2.1

2.3 DUCT SYSTEM CLASSIFICATION ... 2.1

2.4 MATERIAL (PARTICULATE) CHARACTERISTICS AND CLASSES 2.2

CHAPTER 3 DUCT MATERIALS

3.1 INTRODUCTION .. 3.1

3.2 MATERIAL TYPES .. 3.1

3.3 CARBON AND COATED STEEL DATA .. 3.4

3.4 STAINLESS STEEL DATA ... 3.7

3.5 ALUMINUM DATA .. 3.9

3.6 MATERIAL PROPERTIES SUMMARY ... 3.10

3.7 CORROSION ... 3.11

CHAPTER 4 DUCT CONSTRUCTION

4.1 DUCT CONSTRUCTION ... 4.1

4.2 ROUND DUCT COMMON SEAMS AND JOINTS ... 4.16

4.3 RECTANGULAR DUCT COMMON SEAMS AND JOINTS ... 4.16

4.4 FABRICATION TOLERANCES .. 4.16

4.5 WELDING .. 4.16

4.6 SELECTION OF REINFORCEMENTS ... 4.16

4.7 CONNECTING INDUSTRIAL DUCT .. 4.20

4.8 THERMAL EXPANSION ... 4.32

4.9 FLEXIBLE DUCT ... 4.37

CHAPTER 5 HANGERS AND SUPPORTS

5.1 INTRODUCTION AND SCOPE .. 5.1

5.2 HANGERS AND SUPPORTS COMMENTARY .. 5.1

5.3 DUCT LOADS COMMENTARY .. 5.1

5.4 GENERAL GUIDELINES .. 5.2

5.5 METHODS FOR HANGING AND SUPPORTING DUCT .. 5.3

5.6 DUCT HANGERS AND SUPPORTS .. 5.6

5.7 GASKETS, CAULKING, AND JOINT SEALANTS ... 5.34

CHAPTER 6 FITTINGS, VENTS, DOORS & OTHER APPURTEYNANCES

6.1 DUCT AND FITTING DESIGN ... 6.1
6.2 RELIEF VENTS ... 6.8
6.3 CLEANOUTS ... 6.11
6.4 TEST AND SAMPLING OPENINGS 6.16
6.5 USE OF DAMPERS AND VALVES 6.16

CHAPTER 7 STACKS AND DISCHARGE DUCTS

7.1 STACKS AND DISCHARGE DUCTS 7.1
7.2 STACK SAMPLING FACILITIES 7.6

CHAPTER 8 SURFACE PREPARATION COMMENTARY FOR STEEL AND CONCRETE SUBSTRATES

1. INTRODUCTION ... 8.1
2. CONTENTS ... 8.1
3. IMPORTANCE OF SURFACE PREPARATION 8.3
4. SURFACE CONDITIONS .. 8.3
5. SUMMARY OF SSPC SURFACE PREPARATION STANDARDS 8.9
6. SELECTION OF ABRASIVES, BLAST CLEANING PARAMETERS, AND EQUIPMENT .. 8.21
7. SUMMARY OF SSPC ABRASIVE STANDARDS 8.26
8. WET ABRASIVE BLAST AND WATERJETTING METHODS 8.27
9. OTHER CLEANING METHODS ... 8.30
10. FILM THICKNESS .. 8.32
11. CONSENSUS REFERENCE PHOTOGRAPHS 8.32
12. OTHER SSPC SURFACE PREPARATION DOCUMENTS IN THIS VOLUME .. 8.34
13. NON-SSPC CLEANING STANDARDS 8.35
14. SURFACE PREPARATION OF CONCRETE FOR COATING 8.35
15. SURFACE PREPARATION OF OTHER METALLIC SURFACES 8.36

APPENDIX A REFERENCED DOCUMENTS

A.1 REFERENCED DOCUMENTS ... A.1

APPENDIX B WELDING SYMBOLS

B.1 WELDING SYMBOLS ... B.1
<table>
<thead>
<tr>
<th>TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 Duct Classes and Minimum Conveying Velocities</td>
<td>2.3</td>
</tr>
<tr>
<td>2-2 Material Class Descriptions</td>
<td>2.4</td>
</tr>
<tr>
<td>2-3 Specific Materials Classes</td>
<td>2.5</td>
</tr>
<tr>
<td>2-3 Specific Materials Classes (continued)</td>
<td>2.6</td>
</tr>
<tr>
<td>2-3 Specific Materials Classes (continued)</td>
<td>2.7</td>
</tr>
<tr>
<td>3-1 Hot–rolled Steel Gages</td>
<td>3.4</td>
</tr>
<tr>
<td>3-2 Cold–rolled Steel Gages</td>
<td>3.5</td>
</tr>
<tr>
<td>3-3 Galvanized and Aluminized Steel Gages</td>
<td>3.6</td>
</tr>
<tr>
<td>3-4 Stainless Steel Gages</td>
<td>3.8</td>
</tr>
<tr>
<td>Aluminum Sheet Gages</td>
<td>3.9</td>
</tr>
<tr>
<td>3-5 Material Properties and Temperature Limits</td>
<td>3.10</td>
</tr>
<tr>
<td>3-6 Corrosion Chart</td>
<td>3.12</td>
</tr>
<tr>
<td>3-7 Corrosion Chart (continued)</td>
<td>3.13</td>
</tr>
<tr>
<td>4-1S Recommended Sheet Steel Gages for Round Duct, Up to 650°F</td>
<td>4.2</td>
</tr>
<tr>
<td>4-1S Recommended Sheet Steel Gages for Round Duct, Up to 650°F</td>
<td>4.3</td>
</tr>
<tr>
<td>4-1S Recommended Sheet Steel Gages for Round Duct, Up to 650°F</td>
<td>4.4</td>
</tr>
<tr>
<td>4-1A Recommended Aluminum Gages for Round Duct, Up to 120°F</td>
<td>4.5</td>
</tr>
<tr>
<td>4-1A Recommended Aluminum Gages for Round Duct, Up to 120°F</td>
<td>4.6</td>
</tr>
<tr>
<td>4-1Spiral Recommended Sheet Steel Gages for Round Spiral Duct, Up to 250°F</td>
<td>4.8</td>
</tr>
<tr>
<td>4-1Spiral Recommended Sheet Steel Gages for Round Spiral Duct, Up to 250°F</td>
<td>4.9</td>
</tr>
<tr>
<td>4-2S Recommended Sheet Steel Gages for Rectangular Duct, Up to 650°F</td>
<td>4.10</td>
</tr>
<tr>
<td>4-2S Recommended Sheet Steel Gages for Rectangular Duct, Up to 650°F</td>
<td>4.11</td>
</tr>
<tr>
<td>4-2S Recommended Sheet Steel Gages for Rectangular Duct, Up to 650°F</td>
<td>4.12</td>
</tr>
<tr>
<td>4-2S Recommended Sheet Steel Gages for Rectangular Duct, Up to 650°F</td>
<td>4.13</td>
</tr>
<tr>
<td>4-2A Recommended Aluminum Gages for Rectangular Duct, Up to 120°F</td>
<td>4.14</td>
</tr>
<tr>
<td>4-2A Recommended Aluminum Gages for Rectangular Duct, Up to 120°F</td>
<td>4.15</td>
</tr>
<tr>
<td>4-3 Thermal Expansion Chart</td>
<td>4.33</td>
</tr>
<tr>
<td>5-1 Maximum Allowable Load at Points of Support - Carbon and</td>
<td>5.13</td>
</tr>
<tr>
<td>Galvanized Steel Ducts</td>
<td></td>
</tr>
<tr>
<td>5-2 Maximum Allowable Load at Points of Support - Aluminum Ducts</td>
<td>5.14</td>
</tr>
<tr>
<td>5-3 Support Capacity of Horizontal Channel</td>
<td>5.21</td>
</tr>
<tr>
<td>5-4 Support Capacity of Horizontal Angle</td>
<td>5.22</td>
</tr>
<tr>
<td>5-5 Standard Steel Pipe Column - Load Tables</td>
<td>5.28</td>
</tr>
<tr>
<td>5-6 Hanger Rod Capacity</td>
<td>5.29</td>
</tr>
<tr>
<td>5-7 Hanger Bar Capacity</td>
<td>5.29</td>
</tr>
<tr>
<td>5-8 Hanger Angle Capacity</td>
<td>5.29</td>
</tr>
<tr>
<td>5-9 Knee Brace Hanger Capacity</td>
<td>5.30</td>
</tr>
<tr>
<td>5-10 Knee Brace Support Capacity</td>
<td>5.31</td>
</tr>
<tr>
<td>5-11 Bolt Stress Area</td>
<td>5.32</td>
</tr>
<tr>
<td>5-12 Grade Markings for Steel Bolts</td>
<td>5.33</td>
</tr>
<tr>
<td>5-13 Gaskets, Caulking, and Joint Sealants</td>
<td>5.34</td>
</tr>
<tr>
<td>TABLES (continued)</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>5-13 Gaskets, Caulking, and Joint Sealants (continued)</td>
<td>5.35</td>
</tr>
<tr>
<td>8-1 Summary of Current SSPC Abrasive and Surface Preparation Standards and Specifications</td>
<td>8.4</td>
</tr>
<tr>
<td>8-2 Relative Ranking of SSPC Surface Preparation Standards for Steel Based on Thoroughness of Cleaning¹</td>
<td>8.9</td>
</tr>
<tr>
<td>8-3 Threshold Limit Values (TLV) for Solvents⁴</td>
<td>8.10</td>
</tr>
<tr>
<td>8-4a Comparison of SSPC And ISO Surface Preparation Standards for Power-and Hand-Tool Cleaned Steel</td>
<td>8.14</td>
</tr>
<tr>
<td>8-4b Comparison of SSPC And ISO Surface Preparation Standards for Blast Cleaned Steel</td>
<td>8.16</td>
</tr>
<tr>
<td>8-5 Physical Data on Non-metallic Abrasives</td>
<td>8.22</td>
</tr>
<tr>
<td>8-6 Approximate Profile Height of Blasted Steel Using Different Size Abrasives</td>
<td>8.23</td>
</tr>
<tr>
<td>8-7 SSPC Definitions of Water Cleaning and Waterjetting</td>
<td>8.27</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION
INTRODUCTION

This guide is a compilation of standards and construction techniques which have received wide acceptance for the fabrication and installation of ducts designed to convey air and gases, usually contaminated with particulates, fumes, vapors or corrosive aerosols.

1.2 MANUAL CONTENTS

CHAPTER 1 INTRODUCTION

The introduction outlines the format and layout of the manual, and includes a summary of the contents of each chapter.

CHAPTER 2 INDUSTRIAL DUCT APPLICATIONS

This chapter contains various definitions and information related to industrial duct classes, as well as, relevant physical characteristics of materials frequently conveyed in industrial duct systems. It is envisioned that the designer will use the information contained in this chapter or similar information from other sources, such as those listed in Section 2.2, to specify the most appropriate Duct Class for the system under consideration, and the concentration and characteristics of the materials being conveyed. We can not over-emphasize the importance that the specification of the Duct Class and an accurate appraisal of the conveying characteristics of the materials being conveyed have on the successful design of an industrial duct system.

CHAPTER 3 DUCT MATERIALS

This chapter contains detailed information on the physical characteristics of the most common materials used in industrial duct construction. Also included, are brief descriptions of each material type, its most common uses and some limitations that may apply.

CHAPTER 4 DUCT CONSTRUCTION

This chapter contains the basic duct selection tables for round and rectangular industrial ducts, fabricated from commercial grade carbon, galvanized and stainless steels, and aluminum as described in Chapter 3 Duct Materials. This chapter also contains information on thermal expansion and contraction, and common types of seams, joints, and reinforcement used in industrial duct construction.

CHAPTER 5 HANGERS AND SUPPORTS

This chapter contains the necessary tables and instructions to assist the user in selecting from among various designs of hangers and supports for industrial duct applications. It also contains information on typical fasteners, gaskets, caulking and joint sealants.

CHAPTER 6 FITTINGS, VENTS, DOORS, OTHER APPURTEANCES

This chapter contains information on the selection of fittings, vents, access doors and other appurtenances common to many industrial duct applications.

CHAPTER 7 STACKS AND DISCHARGE DUCTS

This chapter contains several different types of common stacks and exhaust outlets found in industrial settings, those under 20 ft in total stack height may be fabricated per Class 1 construction, taller stacks may be guyed or free standing and require special consideration of wind loads and the possible effect of resonant vibration.

CHAPTER 8 SURFACE PREPARATION COMMENTARY FOR STEEL AND CONCRETE SUBSTRATES

This chapter contains surface preparation commentary intended to be an aid in selecting the proper surface preparation method, materials, and specification for steel, other metals, and concrete.

APPENDICES

APPENDIX A REFERENCED DOCUMENTS

APPENDIX B WELDING SYMBOLS