FOREWORD

These duct construction standards are intended for use by contractors, fabricators, and designers of air pollution control, pneumatic conveyance, and industrial ventilation systems.

The 1977 edition of these standards was the first publication dealing with the selection of duct gage and reinforcing systems for industrial duct applications. While the first edition served industry very well for many years, technology has continued to move forward, and the Industrial Ventilation and Power Industry Task Force of SMACNA has responded to our membership’s request to expand and update the original text. We are taking their request one step further by restructuring the manual and providing supportive software to make the design process more “user friendly.” One of the main considerations in the development of the new standards is the opportunity to create a software program for personal computers that can greatly expand the computational capability of the user and permits an almost unlimited examination of different construction details and design solutions. A comprehensive review of the old procedures was completed and modifications implemented to update the technology and make the design procedures compatible with the computerization effort.

While the new procedures include many of the same assumptions as the original work, a number of new features have been added:

- Microsoft® Windows® based calculation software to expedite selection of construction details (software sold separately)
- Four different types of carbon steel and two different types of galvanized steel
- Seven different types of stainless steel alloys
- Four different types of aluminum alloys
- Design capability for high temperature systems up to 800°F (427°C), and higher with design review by a specialized professional
- Consideration of wind, snow, ice, and maintenance loads
- Expanded tables to include ducts to 96 in. (2440 mm)
- Expanded tables to include material up to ½ in. (12.7 mm) thickness
- All data presented in both English (Inch–Pound) and Metric (SI) units
- Expanded data for the selection of duct supports
- Chapter on the use of spiral lockseam pipe in industrial applications
- Accepted industry practice for round industrial ducts
- New Duct Class 5 for systems handling corrosives
- New chapter on welding
- New guide specification for the fabrication and installation of industrial duct systems
- Chapter of practical examples with step-by-step calculation instructions
- Chapter of flow charts to guide the user in design process

The Industrial Ventilation and Power Industry Task Force is greatly indebted to Dr. Michael C. Soteriades, who did the original work for the first edition and also provided the professional consultation and analysis necessary for the development of this new and expanded publication.
INDUSTRIAL VENTILATION AND POWER
INDUSTRY TASK FORCE

The SMACNA Industrial Ventilation and Power Industry Task Force develops and maintains standards for the design and construction of industrial ventilation and air pollution control systems and duct systems used in nuclear and fossil fuel power plants.

Lyle E. Wirth, Chairman
Johnson Contracting Company, Inc.
East Moline, Illinois

Michael Corrigan
Lyon Sheet Metal Works, Inc.
Saint Louis, Missouri

Richard J. Blum
Kirk & Blum
Cincinnati, Ohio

Ken Groeschel Jr., P.E.
Groeschel Company
Malone, Wisconsin

Mitchell Hoppe
Melrose Metal Products, Inc.
Fremont, California

G. A. Navas, Staff Liaison
SMACNA, Inc.
Chantilly, Virginia

FORMER COMMITTEE MEMBERS AND OTHER CONTRIBUTORS

Donald Partney
Granite City, Illinois

Arnold Holming
Milwaukee, Wisconsin

Harry Basore
Kansas City, Missouri

C. Stuart Perkins
Los Angeles, California

Harold Weisgerber
Cincinnati, Ohio

Michael G. Poja
Milwaukee, Wisconsin

Marvin Hicks
Idaho Falls, Idaho

Jack Puhl
St. Louis, Missouri

Wallace E. Fizer
Lexington, Kentucky

Francis J. Walter
Evansville, Indiana

William Harbaugh
Houston, Texas

Norman White
Detroit, Michigan

Bernard F. Kuenz
Bridgeton, Missouri

Robert Seiden
Pittsburgh, Pennsylvania

Robert J. Williams, P.E.
The Du-Mont Companies
Peoria, Illinois

John Stratton, Staff
SMACNA, Inc.
Chantilly, Virginia

John Gundlach
McKinstry/Metal
Seattle, Washington
NOTICE TO USERS
OF THIS PUBLICATION

1. DISCLAIMER OF WARRANTIES

a) The Sheet Metal and Air Conditioning Contractors’ National Association (“SMACNA”) provides its product for informational purposes.

b) The product contains “Data” which is believed by SMACNA to be accurate and correct but the data, including all information, ideas and expressions therein, is provided strictly “AS IS”, with all faults. SMACNA makes no warranty either express or implied regarding the Data and SMACNA EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE.

c) By using the data contained in the product user accepts the Data “AS IS” and assumes all risk of loss, harm or injury that may result from its use. User acknowledges that the Data is complex, subject to faults and requires verification by competent professionals, and that modification of parts of the Data by user may impact the results or other parts of the Data.

d) IN NO EVENT SHALL SMACNA BE LIABLE TO USER, OR ANY OTHER PERSON, FOR ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING, DIRECTLY OR INDIRECTLY, OUT OF OR RELATED TO USER’S USE OF SMACNA’S PRODUCT OR MODIFICATION OF DATA THEREIN. This limitation of liability applies even if SMACNA has been advised of the possibility of such damages. IN NO EVENT SHALL SMACNA’S LIABILITY EXCEED THE AMOUNT PAID BY USER FOR ACCESS TO SMACNA’S PRODUCT OR $1,000.00, WHICHEVER IS GREATER, REGARDLESS OF LEGAL THEORY.

e) User by its use of SMACNA’s product acknowledges and accepts the foregoing limitation of liability and disclaimer of warranty and agrees to indemnify and hold harmless SMACNA from and against all injuries, claims, loss or damage arising, directly or indirectly, out of user’s access to or use of SMACNA’s product or the Data contained therein.

2. ACCEPTANCE

This document or publication is prepared for voluntary acceptance and use within the limitations of application defined herein, and otherwise as those adopting it or applying it deem appropriate. It is not a safety standard. Its application for a specific project is contingent on a designer or other authority defining a specific use. SMACNA has no power or authority to police or enforce compliance with the contents of this document or publication and it has no role in any representations by other parties that specific components are, in fact, in compliance with it.

3. AMENDMENTS

The Association may, from time to time, issue formal interpretations or interim amendments, which can be of significance between successive editions.

4. PROPRIETARY PRODUCTS

SMACNA encourages technological development in the interest of improving the industry for the public benefit. SMACNA does not, however, endorse individual manufacturers or products.

5. FORMAL INTERPRETATION

a) A formal interpretation of the literal text herein or the intent of the technical committee or task force associated with the document or publication is obtainable only on the basis of written petition, addressed to the Technical Resources Department and sent to the Association’s national office in Chantilly, Virginia. In the event that the petitioner has a substantive disagreement with the interpretation, an appeal may be filed with the Technical Resources Committee, which has technical oversight responsibility. The request must pertain to a specifically identified portion of the document that does not involve published text which provides the requested information. In considering such requests, the Association will not review or judge products or components as being in compliance with the document or publication. Oral and written interpretations otherwise obtained from anyone affiliated with the Association are unofficial. This procedure does not prevent any committee or task force chairman, member of the committee or task force, or staff liaison from expressing an opinion on a provision within the document, provided that such person clearly states that the opinion is personal and does not represent an official act of the Association in any way, and it should not be relied on as such. The Board of Directors of SMACNA shall have final authority for interpretation of this standard with such rules or procedures as they may adopt for processing same.

b) SMACNA disclaims any liability for any personal injury, property damage, or other damage of any nature whatsoever, whether special, indirect, consequential or compensatory, direct or indirectly resulting from the publication, use of, or reliance upon this document. SMACNA makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

6. APPLICATION

a) Any standards contained in this publication were developed using reliable engineering principles and research plus consultation with, and information obtained from, manufacturers, users, testing laboratories, and others having specialized experience. They are
subject to revision as further experience and investigation may show is necessary or desirable. Construction and products which comply with these Standards will not necessarily be acceptable if, when examined and tested, they are found to have other features which impair the result contemplated by these requirements. The Sheet Metal and Air Conditioning Contractors’ National Association and other contributors assume no responsibility and accept no liability for the application of the principles or techniques contained in this publication. Authorities considering adoption of any standards contained herein should review all federal, state, local, and contract regulations applicable to specific installations.

b) In issuing and making this document available, SMACNA is not undertaking to render professional or other services for or on behalf of any person or entity. SMACNA is not undertaking to perform any duty owed to any person or entity to someone else. Any person or organization using this document should rely on his, her or its own judgement or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance.

7. **REPRINT PERMISSION**

Non-exclusive, royalty-free permission is granted to government and private sector specifying authorities to reproduce only any construction details found herein in their specifications and contract drawings prepared for receipt of bids on new construction and renovation work within the United States and its territories, provided that the material copied is unaltered in substance and that the reproducer assumes all liability for the specific application, including errors in reproduction.

8. **THE SMACNA LOGO**

The SMACNA logo is registered as a membership identification mark. The Association prescribes acceptable use of the logo and expressly forbids the use of it to represent anything other than possession of membership. Possession of membership and use of the logo in no way constitutes or reflects SMACNA approval of any product, method, or component. Furthermore, compliance of any such item with standards published or recognized by SMACNA is not indicated by presence of the logo.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>INDUSTRIAL VENTILATION AND POWER INDUSTRY TASK FORCE</td>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>FORMER COMMITTEE MEMBERS AND OTHER CONTRIBUTORS</td>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>NOTICE TO USERS OF THIS PUBLICATION</td>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>SCOPE</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
<td>PURPOSE</td>
<td>1.1</td>
</tr>
<tr>
<td>1.3</td>
<td>DEVELOPMENT OF THE SECOND EDITION</td>
<td>1.1</td>
</tr>
<tr>
<td>1.4</td>
<td>INDUSTRIAL DUCT DESIGN AVENUES</td>
<td>1.2</td>
</tr>
<tr>
<td>1.5</td>
<td>HOW TO USE THIS MANUAL</td>
<td>1.2</td>
</tr>
<tr>
<td>1.6</td>
<td>MANUAL CONTENTS</td>
<td>1.3</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>INDUSTRIAL DUCT APPLICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2</td>
<td>DEFINITION OF INDUSTRIAL DUCT</td>
<td>2.1</td>
</tr>
<tr>
<td>2.3</td>
<td>DUCT SYSTEM CLASSIFICATION</td>
<td>2.1</td>
</tr>
<tr>
<td>2.4</td>
<td>MATERIAL (PARTICULATE) CHARACTERISTICS AND CLASSES</td>
<td>2.2</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>DUCT MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>3.1</td>
</tr>
<tr>
<td>3.2</td>
<td>MATERIAL TYPES</td>
<td>3.1</td>
</tr>
<tr>
<td>3.3</td>
<td>HOT–ROLLED (CARBON) STEEL DATA</td>
<td>3.3</td>
</tr>
<tr>
<td>3.4</td>
<td>COLD–ROLLED (CARBON) STEEL DATA</td>
<td>3.4</td>
</tr>
<tr>
<td>3.5</td>
<td>GALVANIZED SHEET DATA</td>
<td>3.5</td>
</tr>
<tr>
<td>3.6</td>
<td>STAINLESS STEEL DATA</td>
<td>3.6</td>
</tr>
<tr>
<td>3.7</td>
<td>ALUMINUM DATA</td>
<td>3.10</td>
</tr>
<tr>
<td>3.8</td>
<td>MATERIAL PROPERTIES SUMMARY</td>
<td>3.12</td>
</tr>
<tr>
<td>3.9</td>
<td>CORROSION</td>
<td>3.14</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>DESIGN CRITERIA</td>
<td>4</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
<td>GENERAL PROVISIONS</td>
<td>4.1</td>
</tr>
<tr>
<td>4.3</td>
<td>NOMENCLATURE</td>
<td>4.1</td>
</tr>
<tr>
<td>4.4</td>
<td>LOADS</td>
<td>4.3</td>
</tr>
<tr>
<td>4.5</td>
<td>LIMITS AND TOLERANCES</td>
<td>4.5</td>
</tr>
<tr>
<td>4.6</td>
<td>SERVICEABILITY AND DURABILITY</td>
<td>4.5</td>
</tr>
<tr>
<td>4.7</td>
<td>STRENGTH PROVISIONS – DESIGN BASIS</td>
<td>4.6</td>
</tr>
<tr>
<td>4.8</td>
<td>DESIGN OF CIRCUMFERENTIAL STIFFENERS</td>
<td>4.7</td>
</tr>
<tr>
<td>4.9</td>
<td>CONNECTIONS</td>
<td>4.8</td>
</tr>
<tr>
<td>4.10</td>
<td>HANGERS AND SUPPORTS</td>
<td>4.9</td>
</tr>
<tr>
<td>4.11</td>
<td>THERMAL EXPANSION</td>
<td>4.9</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>COMMENTARY</td>
<td>5</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>5.1</td>
</tr>
<tr>
<td>5.2</td>
<td>LOADS</td>
<td>5.1</td>
</tr>
<tr>
<td>5.3</td>
<td>LIMITS AND TOLERANCES</td>
<td>5.4</td>
</tr>
</tbody>
</table>
CHAPTER 6 FLOW CHARTS

6.1 INTRODUCTION ... 6.1
6.2 COMMENTARY ... 6.1
6.3 ASSUMPTIONS ... 6.1
6.4 FLOW CHARTS ... 6.1

CHAPTER 7 ILLUSTRATIVE EXAMPLES

7.1 INTRODUCTION ... 7.1
7.2 COMMENTARY ... 7.1
7.3 NOMENCLATURE ... 7.1
EXAMPLE 7–1. COMPLEX LOAD COMBINATIONS 7.5
EXAMPLE 7–2. HIGH TEMPERATURE APPLICATION 7.13
EXAMPLE 7–3. MODERATE TEMPERATURE (ALUMINUM) APPLICATION 7.20
EXAMPLE 7–4. (CARBON STEEL) DUCT RISER IN AN OUTDOOR APPLICATION 7.27

CHAPTER 8 DUCT SELECTION TABLES – CARBON AND GALVANIZED

8.1 INTRODUCTION ... 8.1
8.2 USE OF THE TABLES .. 8.2
EXAMPLE 8–1. MODIFYING PARTICULATE DENSITY TO ACCOUNT FOR INSULATION AND CLADDING GRAVITY LOADS ... 8.25
EXAMPLE 8–2. TYPICAL CARBON STEEL DUCT SELECTION 8.54
EXAMPLE 8–3. TYPICAL GALVANIZED STEEL DUCT SELECTION 8.54
EXAMPLE 8–4. TYPICAL GALVANIZED STEEL DUCT SELECTION FOR A POSTIVE PRESSURE APPLICATION ... 8.55

CHAPTER 9 DUCT SELECTION TABLES – STAINLESS STEEL

9.1 INTRODUCTION ... 9.1
9.2 USE OF THE TABLES .. 9.3
EXAMPLE 9–1. CLASS 5, STAINLESS STEEL DUCT CONVEYING CORROSIVE FUMES AT MODERATE TEMPERATURE 9.34
EXAMPLE 9–2. CLASS 1, STAINLESS STEEL DUCT FOR PROCESS EXHAUST AT HIGH TEMPERATURE ... 9.35
EXAMPLE 9–3. CLASS 5, STAINLESS STEEL DUCT CONVEYING CORROSIVES UNDER POSITIVE PRESSURE 9.36

CHAPTER 10 DUCT SELECTION TABLES – ALUMINUM

10.1 INTRODUCTION ... 10.1
10.2 USE OF THE TABLES .. 10.3
EXAMPLE 10–1. TYPICAL ALUMINUM DUCT SELECTION FOR A CLASS 1 APPLICATION ... 10.34
EXAMPLE 10–2. TYPICAL ALUMINUM DUCT SELECTION FOR A CLASS 1 APPLICATION UNDER POSITIVE PRESSURE 10.35
CHAPTER 11 SELECTION TABLES – SPIRAL LOCKSEAM PIPE

11.1 INTRODUCTION ... 11.1
11.2 COMMENTARY ... 11.3
11.3 DESIGN CRITERIA FOR SPIRAL DUCTS 11.4
11.4 USE GUIDELINES ... 11.5
11.5 SPIRAL PIPE – CARBON AND GALVANIZED 11.7
11.6 SPIRAL PIPE – STAINLESS STEEL 11.30
11.7 SPIRAL PIPE – ALUMINUM .. 11.42
11.8 POSITIVE PRESSURE SYSTEMS .. 11.54
11.9 COMMENTARY ON STIFFENERS AND FLANGES 11.55
EXAMPLE 11–1. TYPICAL GALVANIZED STEEL SPIRAL PIPE SELECTION FOR A CLASS 1 APPLICATION .. 11.8
EXAMPLE 11–2. TYPICAL GALVANIZED STEEL SPIRAL PIPE SELECTION FOR A CLASS 2 APPLICATION .. 11.18
EXAMPLE 11–3. TYPICAL STAINLESS STEEL SPIRAL PIPE SELECTION FOR A CLASS 5 APPLICATION .. 11.31
EXAMPLE 11–4. TYPICAL ALUMINUM SPIRAL PIPE SELECTION FOR A CLASS 1 APPLICATION .. 11.43
EXAMPLE 11–5. TYPICAL GALVANIZED STEEL SPIRAL PIPE SELECTION FOR A CLASS 1 APPLICATION UNDER POSITIVE PRESSURE 11.54

CHAPTER 12 STIFFENERS, FLANGES, AND FASTENERS

12.1 INTRODUCTION AND SCOPE .. 12.1
12.2 SELECTION OF STIFFENERS ... 12.1
12.3 SELECTION OF CONNECTING FLANGES 12.28
12.4 SELECTION OF BOLTS FOR CONNECTING DUCT 12.59
12.5 GASKETS, CAULKING, AND JOINT SEALANTS 12.82
EXAMPLE 12–1. COMPUTING STIFFENER REQUIREMENTS FOR SPECIAL APPLICATIONS ... 12.3
EXAMPLE 12–2. SELECTION OF ALTERNATE STIFFENERS FOR LONGITUDINAL SEAM PIPE .. 12.4
EXAMPLE 12–3. SELECTION OF ALTERNATE STIFFENERS FOR SPIRAL PIPE ... 12.5
EXAMPLE 12–4. SELECTION OF STIFFENERS USING STAINLESS STEEL TABLES ... 12.13
EXAMPLE 12–5. SELECTION OF STIFFENERS USING ALUMINUM TABLES ... 12.17
EXAMPLE 12–6. WELDING OF REINFORCEMENTS (CARBON STEEL) ... 12.22
EXAMPLE 12–7. WELDING OF REINFORCEMENTS (STAINLESS STEEL) ... 12.23
EXAMPLE 12–8. SELECTING BOLTS FOR CONNECTIONS (BASED ON EXAMPLE 7–1) .. 12.60

CHAPTER 13 HANGERS AND SUPPORTS

13.1 INTRODUCTION AND SCOPE .. 13.1
13.2 HANGERS AND SUPPORTS COMMENTARY 13.1
13.3 GENERAL GUIDELINES .. 13.1
13.4 METHODS FOR HANGING AND SUPPORTING DUCT 13.2
13.5 DUCT HANGERS AND SUPPORTS 13.2
EXAMPLE 13–1. CALCULATION OF DUCT SUPPORT LOAD 13.16

CHAPTER 14 WELDING

14.1 INTRODUCTION ... 14.1
14.2 WELDED JOINT ACCEPTED INDUSTRY PRACTICE 14.1
14.3 WELDED JOINT CONSIDERATIONS 14.1
14.4 WELDING PROCEDURES ... 14.5
14.5 WELDING SYMBOLS ... 14.13
Chapter 15: Accepted Industrial Construction Practices

- **15.1 Introduction** ... 15.1
- **15.2 Round Pipe Common Seams and Joints** 15.1
- **15.3 Fabrication Tolerances** ... 15.1
- **15.4 Fittings** ... 15.8
- **15.5 Stacks** ... 15.14
- **15.6 Stack Sampling Facilities** ... 15.20
- **15.7 Cleanout Doors/Access Openings** 15.23
- **15.8 Dampers and Gates** ... 15.27
- **15.9 Connections and Expansion Joints** 15.27
- **15.10 Fan Inlet and Outlet Conditions** 15.36

Chapter 16: Guide Specification

- **16.1 Introduction** ... 16.1
- **16.2 Drawings** .. 16.1
- **16.3 Seismic Restraint Provisions** 16.1
- **16.4 Guide Specification** ... 16.1

Chapter 17: RIDCS Software Users Manual

- **17.1 Introduction** ... 17.1
- **17.2 Quick Start** ... 17.2
- **17.3 Basics of RIDCS Operation** ... 17.8
- **17.4 Material Properties** .. 17.11
- **17.5 Designing Ductwork Using RIDCS** 17.13

Appendix A: Commentary on Formula Derivation and Units

Appendix B: Supplementary Design Data

Appendix C: Commentary on Surface Preparation Techniques

Appendix D: Referenced Documents

GLOSSARY

INDEX

Due to the large number of figures and tables found in this manual, only the chapter section information is presented here. For a more detailed chapter content listing, consult the reverse side of each chapter title page.
CHAPTER 1

INTRODUCTION
CHAPTER 1 INTRODUCTION

<table>
<thead>
<tr>
<th>SECTIONS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 SCOPE</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2 PURPOSE</td>
<td>1.1</td>
</tr>
<tr>
<td>1.3 DEVELOPMENT OF THE SECOND EDITION</td>
<td>1.1</td>
</tr>
<tr>
<td>1.4 INDUSTRIAL DUCT DESIGN AVENUES</td>
<td>1.2</td>
</tr>
<tr>
<td>1.5 HOW TO USE THIS MANUAL</td>
<td>1.2</td>
</tr>
<tr>
<td>1.6 MANUAL CONTENTS</td>
<td>1.3</td>
</tr>
</tbody>
</table>
1.1 SCOPE

The scope of this manual includes the determination of the necessary construction details for the fabrication and installation of round metallic industrial ductwork within the following general categories, and as further detailed in the scope of individual chapters, through a variety of both analytical and empirical methods:

- Fabricated using the longitudinal welded seam, grooved lockseam, and spirally generated lockseam techniques.
- From commercial grades of carbon, galvanized, or stainless steels, or aluminum of the various grades and types as described in Chapter 3.
- For a design pressure within the range from negative 30 in. wg (7500 Pa) to positive 50 in. wg (12,500 Pa).
- To be supported at intervals not exceeding 30 ft (9150 mm) for longitudinal welded seam pipe, and 20 ft (6100 mm) for spiral pipe.
- For a design temperature not exceeding the specific operating limits listed for each type and grade of metal included in Chapter 3.
- With a nominal diameter within the range of 4 to 96 in. (100 to 2440 mm)
- With a diameter-to-thickness ratio of less than 800 for all longitudinal seam ducts and 1800 for spiral pipe
- Listing of rated stiffeners, flanges, fasteners, hanger and support elements, and the methods for selecting them for specific structural loads.
- Catalogue of accepted industry practices for the fabrication and installation of round metallic industrial duct, with its fittings, appurtenances, accessories, insulation, cladding, hangers and supports.

1.2 PURPOSE

There were three primary purposes behind the development of this manual:

- To develop minimum standards for the fabrication and installation of metallic round industrial duct systems.
- To develop new, and collect existing, duct construction practices and data to serve as an authoritative source of accepted industrial practices for contractors, design engineers, facility managers, and pollution control authorities.
- To provide an authoritative source of documentation and terminology for operations involved in the construction and installation of round metallic industrial duct.

1.3 DEVELOPMENT OF THE SECOND EDITION

The objectives behind the development of this second edition of SMACNA’s Round Industrial Duct Construction Standards are to expand the scope of the first edition; update the theoretical basis for design; improve the presentation to make the expanded publication more “user friendly;” to cover both the simple, low or moderate temperature and pressure indoor systems, as well as the more complex outdoor systems, operating at moderate to high temperature and pressure, and subjected to higher and more complex external loading.

To achieve these objectives the following steps were taken:

- A professional review of the theoretical basis for the first edition was completed and a few recommendations for simplification of the math model and liberalization of the original safety factor were implemented. (For the range of diameters covered in the first edition 4 to 60 in. (100 to 1675 mm), the original safety factor (for negative pressure) was a function of diameter, and its value varied from 4 to 8; the safety factor adopted for the second edition is a constant 4.0, regardless of diameter.)
- Laboratory testing and data analysis on spiral lockseam pipe were completed to support the addition of this important fabrication technique to those already covered in the first edition.
- Material previously covered in broad terms was expanded through in-depth coverage. Whole new chapters were added covering...