INDOOR AIR QUALITY: A SYSTEMS APPROACH

THIRD EDITION – JANUARY, 1998

SMACNA

SHEET METAL AND AIR CONDITIONING CONTRACTORS’ NATIONAL ASSOCIATION, INC.
4201 Lafayette Center Drive
Chantilly, VA 20151-1209
INDOOR AIR QUALITY: A SYSTEMS APPROACH

COPYRIGHT © 1998 All Rights Reserved by

SHEET METAL AND AIR CONDITIONING CONTRACTORS’ NATIONAL ASSOCIATION, INC.

4201 Lafayette Center Drive
Chantilly, VA 20151–1209

Printed in the U.S.A.

FIRST EDITION – SEPTEMBER, 1988
SECOND EDITION – JULY, 1993
THIRD EDITION – JANUARY, 1998

Except as allowed in the Notice to Users and in certain licensing contracts, no part of this book may be reproduced, stored in a retrievable system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
FOREWORD

As the Indoor Air Quality (IAQ) industry has changed over the years, and with coming changes on the horizon, the SMACNA contractor needs to be equipped to handle this every changing market and opportunities. The SMACNA Building Services Task Force was formed to address these issues and develop a manual that provided the hands-on application that would be required by today’s contractor.

This “state-of-the-art” manual should identify IAQ problems as they are currently defined, the methods and procedures used to solve them, the equipment and instrumentation that is used, and the changes that must be made to the building and the building HVAC systems.

This publication is intended to present in a clear and concise, yet comprehensive manner the sources of pollutants, methods of control, and the management techniques necessary to maintain acceptable indoor air quality in today’s market. The SMACNA Building Services Task Force recognizes that this new manual contains the latest information available, and will need to be revised or updated as newer information becomes available.

SMACNA wishes to thank the efforts and funding of the National Energy Management Institute in assisting in the development of this manual for the industry.

SHEET METAL AND AIR CONDITIONING CONTRACTORS’ NATIONAL ASSOCIATION, INC.
BUILDING SERVICES COMMITTEE

Richard Cramer II, Chairman
Dee Cramer Inc.
Flint, MI

C. David Loescher
Loescher, Inc.
Salem, OR

Eli Howard
SMACNA
Chantilly, VA

Randy Novak
Novak Heating & Air Cond., Inc.
Cedar Rapids, IA

OTHER CONTRIBUTORS

Richard Gaynor
Gaynor & Associates
Chicago, IL

National Energy Mgmt. Institute
Alexandria, VA
NOTICE TO USERS
OF THIS PUBLICATION

1. ACCEPTANCE

This document or publication is prepared for voluntary acceptance and use within the limitations of application defined herein, and otherwise as those adopting it or applying it deem appropriate. It is not a safety standard. Its application for a specific project is contingent on a designer or other authority defining a specific use. SMACNA has no power or authority to police or enforce compliance with the contents of this document or publication and it has no role in any representations by other parties that specific components are, in fact, in compliance with it.

2. AMENDMENTS

The Association may, from time to time, issue formal interpretations or interim amendments, which can be of significance between successive editions.

3. PROPRIETARY PRODUCTS

SMACNA encourages technological development in the interest of improving the industry for the public benefit. SMACNA does not, however, endorse individual manufacturers or products.

4. FORMAL INTERPRETATION

A formal interpretation of the literal text herein or the intent of the Technical Resource Committee associated with the document or publication is obtainable only on the basis of written petition, addressed to the Technical Resource Committee and sent to the Association’s national office in Chantilly, Virginia, and subsequent receipt of a written response signifying the approval of the chairman of the Technical Resource Committee. In the event that the petitioner has a substantive disagreement with the interpretation, an appeal may be filed with the Technical Resources Committee, which has technical oversight responsibility. The request must pertain to a specifically identified portion of the document that does not involve published text which provides the requested information. In considering such requests, the Association will not review or judge products or components as being in compliance with the document or publication. Oral and written interpretations otherwise obtained from anyone affiliated with the Association are unofficial. This procedure does not prevent any committee/task force chairman, member of the committee/task force, or staff liaison from expressing an opinion on a provision within the document, provided that such person clearly states that the opinion is personal and does not represent an official act of the Association in any way, and it should not be relied on as such. The Board of Directors of SMACNA shall have final authority for interpretation of this standard with such rules or procedures as they may adopt for processing same.

5. APPLICATION

Any Standards contained in this publication were developed using reliable engineering principles and research plus consultation with, and information obtained from, manufacturers, users, testing laboratories, and others having specialized experience. They are subject to revision as further experience and investigation may show is necessary or desirable. Construction and products which comply with these Standards will not necessarily be acceptable if, when examined and tested, they are found to have other features which impair the result contemplated by these requirements. The Sheet Metal and Air Conditioning Contractors’ National Association and other contributors assume no responsibility and accept no liability for the application of the principles or techniques contained in this publication. Authorities considering adoption of any standards contained herein should review all federal, state, local, and contract regulations applicable to specific installations.

6. REPRINT PERMISSION

Non-exclusive, royalty-free permission is granted to government and private sector specifying authorities to reproduce only any construction details found herein in their specifications and contract drawings prepared for receipt of bids on new construction and renovation work within the United States and its territories, provided that the material copied is unaltered in substance and that the reproducer assumes all liability for the specific application, including errors in reproduction.

7. THE SMACNA LOGO

The SMACNA logo is registered as a membership identification mark. The Association prescribes acceptable use of the logo and expressly forbids the use of it to represent anything other than possession of membership. Possession of membership and use of the logo in no way constitutes or reflects SMACNA approval of any product, method, or component. Furthermore, compliance of any such item with standards published or recognized by SMACNA is not indicated by presence of the logo.

Indoor Air Quality - A Systems Approach • Third Edition
TABLE OF CONTENTS
TABLE OF CONTENTS

FOREWORD .. iii

COMMITTEE ... iv

NOTICE TO USERS OF THIS PUBLICATION ... v

TABLE OF CONTENTS ... vii

PHASE I – FUNDAMENTALS OF INDOOR AIR QUALITY

CHAPTER 1 INTRODUCTION TO INDOOR AIR QUALITY 1.1

1.1 INDOOR AIR QUALITY .. 1.1

1.2 IAQ STANDARDS .. 1.2

1.3 ENERGY CONSERVATION VS. IAQ .. 1.3

1.4 OCCUPANT RESPONSES .. 1.3

1.5 LIABILITY CONCERNS .. 1.4

1.6 IAQ POLICY .. 1.5

1.7 IAQ OPPORTUNITIES .. 1.5

CHAPTER 2 INDOOR ENVIRONMENTAL CONDITIONS .. 2.1

2.1 INTRODUCTION .. 2.1

2.2 THERMAL ENVIRONMENT ... 2.1

2.3 LIGHTING .. 2.2

2.4 NOISE .. 2.3

2.5 ODORS ... 2.3

CHAPTER 3 SYSTEMS AND CONTAMINANTS ... 3.1

3.1 INTRODUCTION .. 3.1

3.2 HVAC DESIGN ... 3.1

3.3 MICROBIAL CONTAMINATION ... 3.7

3.4 CHEMICAL CONTaminants ... 3.8

CHAPTER 4 SOURCES OF INDOOR AIR QUALITY PROBLEMS 4.1

4.1 EXTERNAL FACTORS AND CONDITIONS .. 4.1

4.2 BUILDING MATERIALS AND FURNISHINGS ... 4.1

4.3 MECHANICAL SYSTEMS ... 4.2

4.4 OCCUPANT SOURCES .. 4.4

CHAPTER 5 TESTING AND SAMPLING ... 5.1

5.1 INTRODUCTION .. 5.1

5.2 GASEOUS PRODUCTS .. 5.1

5.3 ORGANIC ... 5.1

5.4 PARTICULATES .. 5.3

PHASE II – IDENTIFICATION, EVALUATION, AND RESOLUTION OF IAQ ISSUES

CHAPTER 6 EVALUATION AND PROBLEM STATEMENT 6.1

6.1 MAGNITUDE OF THE SYMPTOMS .. 6.1

6.2 IDENTIFYING SYMPTOMS AND AUDIT PROCEDURES 6.2

6.3 LOCATION OF SYMPTOMS ... 6.7

6.4 TIMING ... 6.11

6.5 SUMMARY OF SITUATION AND FUNCTION BASED CONTAMINATION 6.11

CHAPTER 7 CLASSIFICATION OF PROBABLE CAUSES 7.1

7.1 INADEQUATE VENTILATION ... 7.1

7.2 CHEMICAL CONTAMINATION .. 7.2

7.3 MICROBIAL CONTAMINATION ... 7.2

Indoor Air Quality - A Systems Approach • Third Edition vii
CHAPTER 8 TESTING AND IDENTIFICATION FOR PROBABLE CAUSES

8.1 SAMPLING ... 8.1
8.2 INSPECTIONS AND INTERVIEWS 8.1
8.3 VENTILATION READINGS .. 8.6

CHAPTER 9 DEVIATION STATEMENT ... 9.1

9.1 AVOIDANCE OF PROBLEMS .. 9.1
9.2 DESIRED CONDITIONS AFTER REMEDIATION 9.2
9.3 CRITERIA FOR SUCCESS ... 9.3

CHAPTER 10 SOLUTION IDENTIFICATION 10.1

10.1 SOLUTION ELIMINATION .. 10.1
10.2 SOURCE MITIGATION & DUCT CLEANING 10.3
10.3 SOURCE CONTROL .. 10.11
10.3.1 CARPETS .. 10.11
10.3.2 WALL DIVIDERS - PANELS ... 10.11
10.3.3 FURNISHINGS .. 10.11
10.3.4 OFFICE EQUIPMENT .. 10.12
10.3.5 STORAGE ... 10.12

CHAPTER 11 PROPOSAL DEVELOPMENT AND IMPLEMENTATION 11.1

11.1 HOW TO WRITE A PROPOSAL ... 11.1
11.2 IMPLEMENTING AN IAQ TEST PLAN 11.4

CHAPTER 12 TESTING AND MONITORING FOR COMPLIANCE 12.1

12.1 OWNER RESPONSIBILITIES .. 12.1
12.2 IMPORTANCE OF REGULAR, PERIODIC TESTING & SAMPLING 12.3

APPENDIX A INDOOR AIR QUALITY TRACKING FORMS A.1

APPENDIX B CONVERSIONS AND CHARTS B.1

APPENDIX C DATA TABLES ... C.1

APPENDIX D INFORMATION SOURCES (AGENCIES, ASSOCIATIONS, ORGANIZATIONS) ... D.1

APPENDIX E POLLUTANT INDEX (SOURCES, SYMPTOMS, LIMITS) E.1

APPENDIX F ILLNESSES AND SYMPTOMS F.1

APPENDIX G BIBLIOGRAPHY AND REFERENCES G.1

APPENDIX H GLOSSARY .. H.1

INDEX ... I.1
TABLES

Table 1–1 Energy Management Strategies and Environmental Impact 1.6
Table 2–1 Factors Affecting Occupant Perceptions of Building Environment 2.2
Table 2–2 Odor Thresholds for Selected Contaminants Found in Buildings 2.4
Table 3–1 Atmospheric Particles in Intake Air (from ASHRAE HVAC Systems & Equipment) 3.4
Table 5–1 Air Sampling Methods for Microbial Contaminations 5.3
Table 5–2 Categories of Airborne Particulates .. 5.4
Table 6–1 Air Pollution Effects on Materials .. 6.2
Table 6–2 Building Walkthrough Checklist ... 6.4
Table 6–3 IAQ Policy Development Steps .. 6.8
Table 8–1 Sampling Protocol and Selection for Indoor Contaminants 8.2
Table 8–2 Sampling, Tools, Methods and Processes .. 8.4
Table 10–1 Identification of Standing Water or Wet Areas Problems 10.2
Table 10–2 Human Carbon Dioxide Exhalation Rates .. 10.4
Table 12–1 Operation and Maintenance Procedures .. 12.2
PHASE I

FUNDAMENTALS OF INDOOR AIR QUALITY
CHAPTER 1

INTRODUCTION TO INDOOR AIR QUALITY
Phase I of this manual introduces the fundamentals of indoor air quality (IAQ) concerns and problems. It covers a brief history leading to the current level of concern over this worldwide issue. The five chapters in Phase I include:

a. Basic indoor environmental concerns.

b. Building environmental systems and how they contribute to the problems.

c. Basic testing and sampling.

d. Solutions to some IAQ problems.

e. Other sources of indoor air problems.

Phase I includes material which most building owners and managers should know in order to work with you to contract for the needed indoor air quality preventive measures and problem solving.

1.1 INDOOR AIR QUALITY

1.1.1 Early IAQ

The first attempts to control the quality of indoor air were repeated often as man developed more complex dwellings and a greater need and desire for ventilation. Until mechanical systems were available to ventilate buildings, man relied on natural ventilation to meet those needs. Caves with smoke exits, castles with cleverly designed fireplace drafts, and the American Indian teepee were examples of early methods to control the indoor environment.

Natural ventilation had many of the advantages we look for today in assessing the ability of mechanical ventilation systems to supply sufficient ventilation air. One of the most significant advantages was the constant supply of fresh outside air which was also low in carbon dioxide concentration and other internally introduced contaminants.

1.1.2 IAQ Concerns

The health of the occupants in a facility should be the primary concern of the building management team responsible for IAQ. We will see later how this is also beneficial in support of evidence against claims of negligence resulting from IAQ problems.

Concern for the health of the occupants shows due diligence in pursuit of a healthy environment. The same concern will result in higher levels of work output.

Several studies have shown that work productivity, often spoken about in abstract terms until now, can rise by as much as 10% if the indoor air is clean and perceived to be healthy. On the other hand, if the indoor environment is poor, or is perceived to be below acceptability, work productivity is certain to drop.

In a 1981 report, the National Research Council identified four basic reasons for increasing concerns about indoor air quality:

a. Energy conservation efforts have tended to reduce the amount of ventilation available to dilute indoor contaminants to acceptable concentrations.

b. Techniques for measuring occupant exposure to contaminants at low concentrations have improved.

c. Widespread sources of contaminants exist indoors and outdoors.

d. Awareness by the general public of the impact of indoor air quality on health and well-being has increased.

Understanding of the importance of indoor air quality has increased significantly during the last decade. Demographic studies have shown that current United States populations typically spend up to 90% of their lives indoors.

Studies also indicate that indoor concentrations of contaminants are frequently higher than corresponding outdoor values. Thus, exposures to indoor contaminants may have more impact on public health and well-being than outdoor exposures.

1.1.3 IAQ Definitions

Generally, indoor air quality may be defined as the nature of air that affects the health and perceptions of the occupants. This definition incorporates the concept of health in the constitution of the World Health Organization (WHO): “Health is a state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity.”

IAQ concerns in the office, educational, and institutional environment differ from industrial indicators of acceptability. The differences are primarily reflected in threshold limit values (TLV’s) which were developed to help maintain the ability of an adult population to perform physical work in an industrial environment. TLV’s are the limits accepted by the