GUYED STEEL STACKS
–Welded Longseam and Spiral Lockseam Construction–
GUYED STEEL STACKS
−Welded Longseam and Spiral Lockseam Construction−

COPYRIGHT © SMACNA 2011
All Rights Reserved
by

SHEET METAL AND AIR CONDITIONING CONTRACTORS’
NATIONAL ASSOCIATION, INC.

4201 Lafayette Center Drive
Chantilly, VA 20151–1219

Printed in the U.S.A.

FIRST EDITION – JANUARY, 2011

Except as allowed in the Notice to Users and in certain licensing contracts, no part of this book may be reproduced, stored in a retrievable system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
FOREWORD

This first edition of *Guyed Steel Stacks – Welded Longseam and Spiral Lockseam Construction* is intended for use by contractors, fabricators, and designers of heating equipment and industrial process facilities.

The Steel Stack Task Force was formed to develop, organize, review and publish a standard of practices for the design, fabrication and installation of guyed steel stacks. This document is the result of that effort.

SHEET METAL AND AIR CONDITIONING CONTRACTORS’ NATIONAL ASSOCIATION, INC.
STEEL STACK TASK FORCE

Chuck Schuermann, Chairman
C&R Mechanical Company
Bridgeton, Missouri

Ken Groeschel Jr., P.E.
Butters-Fetting Co., Inc.
Malone, Wisconsin

Ernest J. Menold, P.E.
Ernest D Menold, Inc.
Lester, Pennsylvania

Mark Graves
Graves Sheet Metal, Inc.
Kokomo, Indiana

Jeff Lindell, P.E.
Sheet Metal Engineering, Inc.
Des Moines, Iowa

G.A. Navas, Staff Liaison
SMACNA, INC
Chantilly, Virginia

Craig T. Christy, P.E.
Industry Consulting Engineers
Portland, Oregon
NOTICE TO USERS
OF THIS PUBLICATION

1. DISCLAIMER OF WARRANTIES

a) The Sheet Metal and Air Conditioning Contractors' National Association ("SMACNA") provides its product for informational purposes.

b) The product contains “Data” which is believed by SMACNA to be accurate and correct but the data, including all information, ideas and expressions therein, is provided strictly “AS IS,” with all faults. SMACNA makes no warranty either express or implied regarding the Data and SMACNA EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE.

c) By using the data contained in the product user accepts the Data “AS IS” and assumes all risk of loss, harm or injury that may result from its use. User acknowledges that the Data is complex, subject to faults and requires verification by competent professionals, and that modification of parts of the Data by user may impact the results or other parts of the Data.

d) IN NO EVENT SHALL SMACNA BE LIABLE TO USER, OR ANY OTHER PERSON, FOR ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING, DIRECTLY OR INDIRECTLY, OUT OF OR RELATED TO USER'S USE OF SMACNA'S PRODUCT OR MODIFICATION OF DATA THEREIN. This limitation of liability applies even if SMACNA has been advised of the possibility of such damages. IN NO EVENT SHALL SMACNA'S LIABILITY EXCEED THE AMOUNT PAID BY USER FOR ACCESS TO SMACNA'S PRODUCT OR $1,000.00, WHICHER IS GREATER, REGARDLESS OF LEGAL THEORY.

e) User by its use of SMACNA's product acknowledges and accepts the foregoing limitation of liability and disclaimer of warranty and agrees to indemnify and hold harmless SMACNA from and against all injuries, claims, loss or damage arising, directly or indirectly, out of user's access to or use of SMACNA's product or the Data contained therein.

2. ACCEPTANCE

This document or publication is prepared for voluntary acceptance and use within the limitations of application defined herein, and otherwise as those adopting it or applying it deem appropriate. It is not a safety standard. Its application for a specific project is contingent on a designer or other authority defining a specific use. SMACNA has no power or authority to police or enforce compliance with the contents of this document or publication and it has no role in any representations by other parties that specific components are, in fact, in compliance with it.

3. AMENDMENTS

The Association may, from time to time, issue formal interpretations or interim amendments, which can be of significance between successive editions.

4. PROPRIETARY PRODUCTS

SMACNA encourages technological development in the interest of improving the industry for the public benefit. SMACNA does not, however, endorse individual manufacturers or products.

5. FORMAL INTERPRETATION

a) A formal interpretation of the literal text herein or the intent of the technical committee or task force associated with the document or publication is obtainable only on the basis of written petition, addressed to the Technical Resources Department and sent to the Association's national office in Chantilly, Virginia. In the event that the petitioner has a substantive disagreement with the interpretation, an appeal may be filed with the Technical Resources Committee, which has technical oversight responsibility. The request must pertain to a specifically identified portion of the document that does not involve published text which provides the requested information. In considering such requests, the Association will not review or judge products or components as being in compliance with the document or publication. Oral and written interpretations otherwise obtained from anyone affiliated with the Association are unofficial. This procedure does not prevent any committee or task force chairman, member of the committee or task force, or staff liaison from expressing an opinion on a provision within the document, provided that such person clearly states that the opinion is personal and does not represent an official act of the Association in any way, and it should not be relied on as such. The Board of Directors of SMACNA shall have final authority for interpretation of this standard with such rules or procedures as they may adopt for processing same.

b) SMACNA disclaims any liability for any personal injury, property damage, or other damage of any nature whatsoever, whether special, indirect, consequential or compensatory, direct or indirectly resulting from the publication, use of, or reliance upon this document. SMACNA makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

6. APPLICATION

a) Any standards contained in this publication were developed using reliable engineering principles and research plus consultation with, and information obtained from, manufacturers, users, testing laboratories, and others having specialized experience. They are
subject to revision as further experience and investigation may show is necessary or desirable. Construction and products which comply with these Standards will not necessarily be acceptable if, when examined and tested, they are found to have other features which impair the result contemplated by these requirements. The Sheet Metal and Air Conditioning Contractors’ National Association and other contributors assume no responsibility and accept no liability for the application of the principles or techniques contained in this publication. Authorities considering adoption of any standards contained herein should review all federal, state, local, and contract regulations applicable to specific installations.

b) In issuing and making this document available, SMACNA is not undertaking to render professional or other services for or on behalf of any person or entity. SMACNA is not undertaking to perform any duty owed to any person or entity to someone else. Any person or organization using this document should rely on his, her or its own judgement or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance.

7. REPRINT PERMISSION

Non-exclusive, royalty-free permission is granted to government and private sector specifying authorities to reproduce only any construction details found herein in their specifications and contract drawings prepared for receipt of bids on new construction and renovation work within the United States and its territories, provided that the material copied is unaltered in substance and that the reproducer assumes all liability for the specific application, including errors in reproduction.

8. THE SMACNA LOGO

The SMACNA logo is registered as a membership identification mark. The Association prescribes acceptable use of the logo and expressly forbids the use of it to represent anything other than possession of membership. Possession of membership and use of the logo in no way constitutes or reflects SMACNA approval of any product, method, or component. Furthermore, compliance of any such item with standards published or recognized by SMACNA is not indicated by presence of the logo.
TABLE OF CONTENTS

FOREWORD .. iii

STEEL STACK TASK FORCE ... iv

NOTICE TO USERS OF THIS PUBLICATION v

TABLE OF CONTENTS .. vii

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION .. 1.1
1.2 DESIGN LIMITATIONS .. 1.1
1.3 LOCATION REQUIREMENTS .. 1.1

CHAPTER 2 GUYED STACKS – WELDED LONGSEAM CONSTRUCTION –

2.1 SELECTION PROCEDURE ... 2.1
2.2 TYPES OF MATERIAL .. 2.1
2.3 STACK OPENINGS .. 2.1
2.4 TERMS FREQUENTLY USED IN STACK DISCUSSIONS 2.2
2.5 DEFINITIONS APPLICABLE TO DATA IN THE STACK SELECTION TABLES .. 2.2
2.6 EXAMPLE .. 2.2
2.7 INTERPOLATING STACK DESIGN DATA ... 2.18

CHAPTER 3 GUYED STACKS – SPIRAL LOCKSEAM CONSTRUCTION –

3.1 SELECTION PROCEDURE ... 3.1
3.2 TYPES OF MATERIAL .. 3.1
3.3 STACK OPENINGS .. 3.1
3.4 TERMS FREQUENTLY USED IN STACK DISCUSSIONS 3.2
3.5 DEFINITIONS APPLICABLE TO DATA IN THE STACK SELECTION TABLES .. 3.2
3.6 EXAMPLE .. 3.2
3.7 INTERPOLATING STACK DESIGN DATA ... 3.14

CHAPTER 4 DESIGN CRITERIA

4.1 LIMITATIONS OF DESIGN ... 4.1
4.2 ESTABLISHING FUNDAMENTAL MODE OF VIBRATION FOR A GUYED STACK 4.1
4.3 CALCULATION OF WIND DEFLECTIONS 4.1
4.4 CALCULATION OF CABLE REACTIONS ... 4.1
4.5 GUYRING INDUCED MOMENT ... 4.3
4.6 COMBINED SHELL STRESSES .. 4.3
<table>
<thead>
<tr>
<th>TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1 Longseam Guyed Steel Stacks – Height 20 ft</td>
<td>2.6</td>
</tr>
<tr>
<td>2–1 Longseam Guyed Steel Stacks – Height 20 ft (continued)</td>
<td>2.7</td>
</tr>
<tr>
<td>2–2 Longseam Guyed Steel Stacks – Height 30 ft</td>
<td>2.8</td>
</tr>
<tr>
<td>2–2 Longseam Guyed Steel Stacks – Height 30 ft (continued)</td>
<td>2.9</td>
</tr>
<tr>
<td>2–3 Longseam Guyed Steel Stacks – Height 40 ft</td>
<td>2.10</td>
</tr>
<tr>
<td>2–3 Longseam Guyed Steel Stacks – Height 40 ft (continued)</td>
<td>2.11</td>
</tr>
<tr>
<td>2–4 Longseam Guyed Steel Stacks – Height 50 ft</td>
<td>2.12</td>
</tr>
<tr>
<td>2–4 Longseam Guyed Steel Stacks – Height 50 ft (continued)</td>
<td>2.13</td>
</tr>
<tr>
<td>2–5 Longseam Guyed Steel Stacks – Height 60 ft</td>
<td>2.14</td>
</tr>
<tr>
<td>2–5 Longseam Guyed Steel Stacks – Height 60 ft (continued)</td>
<td>2.15</td>
</tr>
<tr>
<td>2–6 Longseam Guyed Steel Stacks – Height 80 ft</td>
<td>2.16</td>
</tr>
<tr>
<td>2–6 Longseam Guyed Steel Stacks – Height 80 ft (continued)</td>
<td>2.17</td>
</tr>
<tr>
<td>2–7 Minimum Guyring Sizes</td>
<td>2.18</td>
</tr>
<tr>
<td>3–1 Spiral Lockseam Guyed Steel Stacks – Height 20 ft</td>
<td>3.6</td>
</tr>
<tr>
<td>3–1 Spiral Lockseam Guyed Steel Stacks – Height 20 ft (continued)</td>
<td>3.7</td>
</tr>
<tr>
<td>3–2 Spiral Lockseam Guyed Steel Stacks – Height 30 ft</td>
<td>3.8</td>
</tr>
<tr>
<td>3–2 Spiral Lockseam Guyed Steel Stacks – Height 30 ft (continued)</td>
<td>3.9</td>
</tr>
<tr>
<td>3–3 Spiral Lockseam Guyed Steel Stacks – Height 40 ft</td>
<td>3.10</td>
</tr>
<tr>
<td>3–3 Spiral Lockseam Guyed Steel Stacks – Height 40 ft (continued)</td>
<td>3.11</td>
</tr>
<tr>
<td>3–4 Spiral Lockseam Guyed Steel Stacks – Height 50 ft</td>
<td>3.12</td>
</tr>
<tr>
<td>3–4 Spiral Lockseam Guyed Steel Stacks – Height 50 ft (continued)</td>
<td>3.13</td>
</tr>
<tr>
<td>3–5 Minimum Guyring Sizes</td>
<td>3.14</td>
</tr>
<tr>
<td>FIGURES</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>1–1</td>
<td>Stack Discharge And Air Flow Around Stack</td>
</tr>
<tr>
<td>2–1</td>
<td>Guyed Longseam Steel Stack</td>
</tr>
<tr>
<td>2–2</td>
<td>Typical Stack Thru Roof</td>
</tr>
<tr>
<td>2–3</td>
<td>Guyring Brackets</td>
</tr>
<tr>
<td>2–4</td>
<td>Typical Attachment For Companion Flanges</td>
</tr>
<tr>
<td>2–5</td>
<td>Typical Attachment For Stiffeners</td>
</tr>
<tr>
<td>3–1</td>
<td>Guyed Spiral Lockseam Steel Stack</td>
</tr>
<tr>
<td>3–2</td>
<td>Typical Stack Thru Roof</td>
</tr>
<tr>
<td>3–3</td>
<td>Guyring Brackets</td>
</tr>
<tr>
<td>3–4</td>
<td>Typical Attachment For Companion Flanges</td>
</tr>
<tr>
<td>3–5</td>
<td>Typical Attachment For Stiffeners</td>
</tr>
<tr>
<td>4–1</td>
<td>Summation of Moments</td>
</tr>
<tr>
<td>4–2</td>
<td>Stack vs. Wind Orientation</td>
</tr>
<tr>
<td>4–3</td>
<td>Guy Trigonometry</td>
</tr>
<tr>
<td>4–4</td>
<td>Guyring Loading</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION
1.1 INTRODUCTION

This publication is devoted exclusively to vertical, uniform diameter guyed stacks either founded at ground level or through-the-roof installations. Tables are provided for stacks of specific height ranging from 20 to 80 feet; for specific wind velocities of 100, 125, and 150 miles per hour; and diameters ranging from 12 to 72 inches. Stacks are listed for either longseam welded or spiral lockseam fabrication. On the list of spiral lockseam stacks some selections are not available for specific combinations of diameter, wind speed and stack height due to a maximum gage limit of 12 gage on the lockforming machinery; and for some of the stack designs requiring 14 gage or 12 gage metal, it may be difficult finding a fabricator capable of handling the required gage. In those cases, a suitable welded longseam alternative may be found in Chapter 2.

RESEARCH NOTE: Prior to the development of stack tables for spiral lockseam duct, SMACNA sponsored research into the behavior of spiral pipe subjected to axial compression and bending moments on statically loaded, full size specimens, followed by finite element modeling of the same type of specimen and loading. The data was developed as an adjunct to extensive prior research (1990’s) done on spiral pipe subject to vacuum and internal pressure loads. The new research concluded that while spiral pipe specimens subjected to axial compression could be made to fail as a result of localized buckling due to stress concentration at the load transfer points, between the angle ring intermittent welds and the stack wall, this occurs at loads (11,500 psi) significantly higher than the failure of the spiral lockseam in tension (9300 psi) resulting from bending loads. The important conclusion highlighted here is that all other factors being equal, stacks designed for fabrication with spiral lockseam have a significantly lower design stress in tension than those fabricated from longitudinally welded pipe, resulting in equal or heavier gage requirements than longseam.

1.2 DESIGN LIMITATIONS

This manual is concerned with the design of guyed steel stacks under the following limitations or assumptions:

- The width of any breeching or other opening will not exceed two-thirds the diameter of the stack.
- The stack will have a constant diameter from top to bottom and will be unlined (galvanizing excepted).
- The inlet temperature of the gases will not exceed 300°F.
- The stack will have a constant diameter from top to bottom and will be unlined (galvanizing excepted).

1.3 LOCATION REQUIREMENTS

The location and height of a stack is greatly influenced by the location, size, and configuration of surrounding buildings and topography.

Air flow over a building creates a positive pressure zone on the upstream side of the building and a negative pressure zone (cavity) on the roof and lee side of the building.

Although contour and cavity zones remain relatively unchanged as the wind velocity changes (only the pressures within these zones change), the contour zone and cavity envelopes can often be erratic in shape due to wind turbulence.

Wind flow around stacks creates negative pressure zones and eddies behind the stack in the same manner as air flow around buildings (Figure 1-1). Low stack discharge velocities permit the effluent to be drawn into the stack eddy zone and may cause down wash. This reduces the effective stack height and may cause the effluent to enter the building cavity, even though the discharge may be well above this cavity. Increasing stack discharge velocity and temperature will increase flume height and thus effective stack height.

The stack-to-wind-velocity ratio should be 1.5 to 1 or higher so that the effluent will break cleanly from the stack, down wash will be eliminated, and the effective stack height will be maximized. In most cases, a stack discharge velocity of 3,000 to 4,000 feet per minute will provide adequate performance.

The designer is cautioned that the Environmental Protection Agency (EPA) and state and local ordinances may dictate the stack height and location. Federal Aviation Agency (FAA) regulations will often restrict the height and location of stacks. Designers should adhere strictly to the requirements of all codes and other government regulations.

NOTE: A stack's location, height, and discharge velocity can be critical in preventing the reentry of stack exhaust into a building's ventilation system. Although