AMERICAN NATIONAL STANDARD

Methods for Measuring the Real-Ear Attenuation of Hearing Protectors

Accredited Standards Committee S12, Noise
The American National Standards Institute, Inc. (ANSI) is the national coordinator of voluntary standards development and the clearinghouse in the U.S.A. for information on national and international standards.

The Acoustical Society of America (ASA) is an organization of scientists and engineers formed in 1929 to increase and diffuse the knowledge of acoustics and to promote its practical applications.
AMERICAN NATIONAL STANDARD

Methods for Measuring the Real-Ear Attenuation of Hearing Protectors

Abstract
This standard specifies laboratory-based procedures for measuring, analyzing, and reporting the passive noise-reducing capabilities of hearing protectors. The procedures consist of psychophysical tests conducted on human subjects to determine the real-ear attenuation measured at hearing threshold. Two fitting procedures are provided: Method A) trained-subject fit, intended to describe the capabilities of the devices fitted by carefully trained users, and Method B) inexperienced-subject fit, utilizes subjects with little or no experience with respect to the use of hearing protection, in order to approximate the attenuation that can be attained by groups of users as reported in real-world occupational studies. Regardless of test method, the attenuation data will be valid only to the extent that the users wear the devices in the same manner as during the tests. This standard does not address issues pertaining to computational schemes or rating systems for applying hearing protector attenuation values (see ANSI/ASA S12.68), nor does it specify minimum performance values for hearing protectors, or address comfort or wearability features. Method A of this standard corresponds to ISO 4869-1:1990, Acoustics – Hearing protectors – Part 1: Subjective method for the measurement of sound attenuation, and Method B corresponds to ISO/TS 4869-5:2006, Acoustics – Hearing protectors – Part 5: Method for estimation of noise reduction using fitting by inexperienced test subjects.
AMERICAN NATIONAL STANDARDS ON ACOUSTICS

The Acoustical Society of America (ASA) provides the Secretariat for Accredited Standards Committees S1 on Acoustics, S2 on Mechanical Vibration and Shock, S3 on Bioacoustics, S3/SC1 on Animal Bioacoustics, and S12 on Noise. These committees have wide representation from the technical community (manufacturers, consumers, trade associations, organizations with a general interest, and government representatives). The standards are published by the Acoustical Society of America as American National Standards after approval by their respective Standards Committees and the American National Standards Institute (ANSI).

These standards are developed and published as a public service to provide standards useful to the public, industry, and consumers, and to Federal, State, and local governments.

Each of the Accredited Standards Committees (operating in accordance with procedures approved by ANSI) is responsible for developing, voting upon, and maintaining or revising its own standards. The ASA Standards Secretariat administers Committee organization and activity and provides liaison between the Accredited Standards Committees and ANSI. After the standards have been produced and adopted by the Accredited Standards Committees, and approved as American National Standards by ANSI, the ASA Standards Secretariat arranges for their publication and distribution.

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered and that a concerted effort be made towards their resolution.

The use of an American National Standard is completely voluntary. Their existence does not in any respect preclude anyone, whether he or she has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard.

Acoustical Society of America
ASA Secretariat
1305 Walt Whitman Road, Suite 300
Melville, New York 11747-4300
Telephone: 1 (631) 390-0215
Fax: 1 (631) 923-2875
E-mail: asastds@acousticalsociety.org

© 2016 by Acoustical Society of America. This standard may not be reproduced in whole or in part in any form for sale, promotion, or any commercial purpose, or any purpose not falling within the provisions of the U.S. Copyright Act of 1976, without prior written permission of the publisher. For permission, address a request to the Standards Secretariat of the Acoustical Society of America.
Contents

1. **Scope** ... 1
 1.1 Scope ... 1
 1.2 Applications ... 1

2. **Normative references** .. 2

3. **Terms and definitions** .. 3

4. **Physical requirements of the test facility** ... 4
 4.1 Test signals ... 4
 4.2 Test site ... 4
 4.3 Test apparatus .. 5
 4.4 Head position reference device .. 7
 4.5 Observation of subjects during testing ... 7

5. **Test subjects** .. 7
 5.1 Anatomical features ... 7
 5.2 Otoscopic inspection ... 8
 5.3 Measurement of ear canal size and head dimensions ... 8
 5.4 Gender balance .. 8
 5.5 Hearing sensitivity .. 8
 5.6 Threshold variability (during qualification) ... 8
 5.7 Eyeglasses and jewelry ... 9
 5.8 Number and method of selection of subjects .. 9

6. **Product samples** .. 9
 6.1 Minimum number of samples .. 9
 6.2 Earplugs connected via a flexible retaining cord ... 9
 6.3 Devices with variable band force adjustments .. 10
 6.4 Special requirements for inexperienced-subject-fit method 10

7. **Psychophysical procedure** ... 10
 7.1 Informing the subject .. 10
 7.2 Positioning the subject .. 10
 7.3 Number of open and occluded threshold measurements ... 10
 7.4 Threshold measurement method - Békésy tracking procedure 11
 7.5 Threshold sensitivity at time of testing .. 11
 7.6 Open threshold variability within a test session ... 11
 7.7 Quiet period prior to first threshold measurement .. 11
 7.8 Waiting period subsequent to fitting hearing protector .. 11

8. **Method A: Trained-subject fit** ... 12
 8.1 Training in fitting hearing protectors ... 12
 8.2 Conditions for subject dismissal .. 12
 8.3 Test procedures ... 12

9. **Method B: Inexperienced-subject fit** .. 13
 9.1 Conditions for subject acceptance/dismissal ... 13
 9.2 Test preparation ... 14
 9.3 Test procedure ... 16
Table A.2 – Estimates of Method-A within-laboratory uncertainty for the mean attenuation 22
Table A.3 – An example of Method-A earmuff test data in decibels for a given laboratory 23
Table A.4 – Estimates of Method-A between-laboratory uncertainty for the mean attenuation 23
Table D.1 — Pinna dimensions for force measurements of semi-insert devices, from ANSI/ASA S3.36-2012, Table D.1 ... 29
Foreword

[This Foreword is for information only and is not a part of the American National Standard ANSI/ASA S12.6-2016 American National Standard Methods for Measuring the Real-Ear Attenuation of Hearing Protectors (revision of ANSI/ASA S12.6-2008). As such, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the standard.]

This standard comprises a part of a group of definitions, standards, and specifications for use in noise. It was developed and approved by Accredited Standards Committee S12, Noise, under its approved operating procedures. Those procedures have been accredited by the American National Standards Institute (ANSI). The Scope of Accredited Standards Committee S12 is as follows:

Standards, specifications, and terminology in the field of acoustical noise pertaining to methods of measurement, evaluation, and control, including biological safety, tolerance, and comfort, and physical acoustics as related to environmental and occupational noise.

This standard is a revision of ANSI/ASA S12.6-2008. The principal changes in this update pertain to the definition of the filters used in signal generation, room ambient noise requirements and various other items regarding the test site as described in Clause 4, retention of subjects during Method-B testing, a completely revised annex on the computation of uncertainty in close harmonization with the related specifications in ISO 4869-1, and inclusion of requirements on laboratory procedures for purposes of accreditation for laboratories choosing to become accredited.

This standard does not include performance requirements for hearing protectors, nor does it specify how to use the attenuation values derived from testing via the methods of this standard for the prediction of protected noise exposures; computational methods and attenuation ratings are described in ANSI/ASA S12.68-2008 (R2012). This standard also does not pertain to physical attenuation measurements using acoustical test fixtures or microphones mounted in human ear canals; those procedures are covered in ANSI/ASA S12.42-2010. And finally, with respect to attenuation obtained by individual users, a standard is under development that will provide specifications for field attenuation estimation systems (FAES) intended to estimate the personal attenuation ratings of hearing protection devices obtained by individual wearers in actual practice (BSR/ASA S12.71-201X).

At the time this standard was submitted to Accredited Standards Committee S12, Noise for approval, the membership was as follows:

S.J. Lind, Chair
D.F. Winker, Vice-Chair
S.B. Blaeser, Secretary

3M Personal Safety Division

Acoustical Society of America

© 2016 Acoustical Society of America – All rights reserved
Individual Experts of Accredited Standards Committee S12, Noise, were:

<table>
<thead>
<tr>
<th>B.M. Brooks</th>
<th>D. Lubman</th>
<th>R.J. Peppin</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.J. Campanella</td>
<td>D. Michaud</td>
<td>J.G. Schmitt</td>
</tr>
<tr>
<td>L.S. Finegold</td>
<td>N.P. Miller</td>
<td>P.D. Schomer</td>
</tr>
<tr>
<td>R.D. Hellweg</td>
<td>W.J. Murphy</td>
<td>W.R. Thornton</td>
</tr>
<tr>
<td>A. Konheim</td>
<td>M.A. Nobile</td>
<td>L.A. Wilber</td>
</tr>
<tr>
<td>S.J. Lind</td>
<td>G.E. Winzer</td>
<td></td>
</tr>
</tbody>
</table>

Working Group S12/WG 11, Hearing Protector Attenuation and Performance, which assisted Accredited Standards Committee S12, Noise, in the development of this standard, had the following membership.

<table>
<thead>
<tr>
<th>E.H. Berger, Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Ahroon</td>
</tr>
<tr>
<td>A. Azman</td>
</tr>
<tr>
<td>A. Behar</td>
</tr>
<tr>
<td>J. Birkner</td>
</tr>
<tr>
<td>J. G. Casali</td>
</tr>
<tr>
<td>C. J. Fackler</td>
</tr>
</tbody>
</table>

Suggestions for improvements of this standard will be welcomed. They should be sent to Accredited Standards Committee S12, Noise, in care of the Standards Secretariat of the Acoustical Society of America, 1305 Walt Whitman Road, Suite 300, Melville, New York 11747-4300. Telephone: 631-390-0215; Fax: 631-923-2875; E-mail: asastds@acousticalsociety.org.
Introduction

This standard describes real-ear attenuation at threshold (REAT) methods for the measurement of the noise attenuation of hearing protection devices (HPDs). Variations of this approach have been in wide use since the development of ASA Z24.22-1957. REAT data have generally been recognized as yielding the best measure of the noise attenuation provided by passive hearing protection devices and include the effects of sound transmission from flanking pathways, such as those arising from tissue and bone conduction (Berger, 1986).

Key factors influencing the measured attenuation values are the selection, training, and fitting of the hearing protector test subjects. For that reason this standard includes two methods with distinctly differing approaches for dealing with these issues.

Method A, previously called “experimenter-supervised fit” and now designated “trained-subject fit,” describes something close to an optimum fitting scenario that can be accomplished by a motivated and proficient user. It allows full training and intervention by the experimenter prior to the attenuation measurement, but for the actual test the subject must don the hearing protector on his or her own without assistance. The rationale is that allowing intensive individualized training immediately prior to a subject fitting the device is a reasonable reflection of the best that can be obtained in practice. The reason to preclude the experimenter from actually fitting the device was the observation that experimenters, who vary in the ways they interpret the standard and perform HPD fitting, can increase interlaboratory variability (Murphy et al., 2009). To some extent, isolating the experimenters from the actual test reduces this problem. Furthermore, in actual use, whether trained or not, workers and others don hearing protectors without assistance.

Method B, previously called “subject fit” and currently designated “inexperienced-subject fit” to clearly indicate the key feature of the procedure, intends to approximate “achievable” results for groups of workers in hearing conservation programs. Because in an inexperienced-subject fit procedure the experimenter's input is limited, much depends upon the subjects’ skill in reading and interpreting instructions, which in turn is substantially affected by their prior experience with HPDs and any previous training they may have received. Under such conditions it is important to select subjects with as little prior practice and training in HPD usage as possible; otherwise, their performance on the current tests will likely be influenced by their preconceptions and acquired level of skill (Berger, 1992).

Method B was developed by the Working Group responsible for this standard by evaluating various protocols via both a pilot and an initial full-scale interlaboratory comparison study (Berger et al., 1998; Murphy et al., 2004; Royster et al., 1996). Subsequently, an additional interlaboratory study evaluating six hearing protectors in six different laboratories was conducted, and the results led to refinements in the methods incorporated into the current standard (Murphy et al. 2009).

Sincerely interested and/or highly motivated individuals may obtain workplace attenuation values significantly exceeding Method-B, and even potentially exceeding Method-A results, but for most populations of occupational users, the inexperienced-subject-fit estimates will provide better predictors of group average data than will the Method-A results. The validity of the estimates has been assessed by comparing laboratory-measured values arrived at using procedures similar to the subject-fit protocol of this standard to values for groups of users derived from more than 20 available real-world studies (Berger et al., 1998).

Method A yields higher mean attenuation values and lower within-test standard deviation values than Method B, with the effect being substantially larger for earplugs than for earmuffs because of the greater difficulty in fitting insert devices. See Annex A for information on estimating the uncertainty of these procedures.
American National Standard

Methods for Measuring the Real-Ear Attenuation of Hearing Protectors

1 Scope

1.1 Scope

This standard specifies laboratory-based subjective-method for measuring, analyzing, and reporting the passive noise-reducing capacity of hearing protection devices. The methods consist of psychophysical tests conducted on groups of human subjects to determine real-ear attenuation at threshold.

Two methods are provided, differing in their subject selection, training, hearing protector fitting procedures, and experimenter involvement, but corresponding in all electroacoustic and psychophysical aspects. One method, designated trained-subject fit, is intended to describe the upper limits of hearing protector performance for devices fitted by groups of carefully trained users. The second method, designated inexperienced-subject fit, is conducted with persons with little or no experience with respect to the use of hearing protection. It approximates the attenuation that has been achieved by groups of users as reported in real-world occupational studies (Berger et al., 1998).

1.2 Applications

The selection of test method, trained-subject fit or inexperienced-subject fit, is based upon the intended application.

Method-A trained-subject fit values are useful to estimate performance for individually trained and well-motivated users, as well as in the design of hearing protectors, to provide a theoretical understanding of their performance limitations, and for routine testing for quality assurance purposes.

Method-B inexperienced-subject fit is intended to provide an approximation of the upper limits to the attenuation that can be expected on average for groups of occupational users. Properly trained and motivated individuals can potentially attain larger amounts of protection, in closer agreement with the trained-subject fit data, especially for earplugs, than the inexperienced-subject fit values found using this standard. However, inexperienced-subject fit values provide a closer correspondence to real-world performance for groups of users than do the trained-subject fit data.

Regardless of the test method that is selected, trained-subject fit or inexperienced-subject fit, the attenuation values will be applicable only to the extent that:

(a) the hearing protectors are worn in practice in the same manner as during the laboratory test;

(b) the hearing protectors are properly maintained; and

(c) the anatomical characteristics of the population of actual wearers are a reasonable match to the laboratory test subjects.

The methods of this standard apply to passive hearing protectors, as well as to active hearing protection devices when the electronics are turned off. For evaluation of active hearing protection devices with their electronics turned on, see ANSI/ASA S12.42. Hearing protectors can also take the form of communications headsets and earplugs, helmets, pressure suits, and other systems with sound-