The American National Standards Institute, Inc. (ANSI) is the national coordinator of voluntary standards development and the clearing house in the U.S. for information on national and international standards.

The Acoustical Society of America (ASA) is an organization of scientists and engineers formed in 1929 to increase and diffuse the knowledge of acoustics and to promote its practical applications.
American National Standard

Mechanical Vibration—Balance Quality Requirements of Rigid Rotors, Part 1: Determination of Permissible Residual Unbalance, Including Marine Applications

Secretariat
Acoustical Society of America

Approved 3 August 1999
American National Standards Institute, Inc.

Abstract

This Standard is the U.S. parallel to ISO 1940-1:1986, Mechanical vibration—Balance quality requirements of rigid rotors—Part 1: Determination of permissible residual unbalance. It is a revised version of the prior Standard ANSI S2.19-1989, American National Standard Mechanical Vibration—Balance Quality Requirements of Rigid Rotors, Part 1: Determination of Permissible Residual Unbalance, and contains recommended balance tolerances for various types of rotors and a detailed explanation of how they are to be understood for selected rotor planes. This document also deals with methods of allocating the recommended permissible residual unbalance to rotors with narrowly spaced, overhung, and/or unsymmetrically located correction planes. Various representations of the same unbalance in a rigid rotor are illustrated, limitations on the deviation from the recommended tolerances are suggested, the method of determining the residual unbalance in a given rotor plane without having to rely on the balancing machine calibration is described, and errors resulting from end-drive to the rotor are identified. Requirements for marine applications have been incorporated into table 1 by specifying balance quality grade, \(G \), requirements. Clause 10.1, Balancing Report, states what information a report should include about the balancing machine used. An appendix describes a general method for two-plane balancing.
AMERICAN NATIONAL STANDARDS ON ACOUSTICS

The Acoustical Society of America (ASA) provides the Secretariat for Accredited Standards Committees S1 on Acoustics, S2 on Mechanical Vibration and Shock, S3 on Bioacoustics, and S12 on Noise. These committees have wide representation from the technical community (manufacturers, consumers, and general-interest representatives). The standards are published by the Acoustical Society of America through the American Institute of Physics as American National Standards after approval by their respective standards committees and the American National Standards Institute.

These standards are developed and published as a public service to provide standards useful to the public, industry, and consumers, and to Federal, State, and local governments.

Each of the Accredited Standards Committees (operating in accordance with procedures approved by ANSI) is responsible for developing, voting upon, and maintaining or revising its own standards. The ASA Standards Secretariat administers committee organization and activity, and provides liaison between the Accredited Standards Committees and ANSI. After the Standards have been produced and adopted by the Accredited Standards Committees, and approved as American National Standards by ANSI, the ASA Standards Secretariat arranges for their publication and distribution.

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary. Their existence does not in any respect preclude anyone, whether he or she has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this Standard.

Standards Secretariat
Acoustical Society of America
120 Wall Street, 32nd Floor
New York, New York 10005-3993
USA
Telephone: +1 212 248 0373
Telefax: +1 212 248 0146
E-mail: asastds@aip.org
Internet: http://asa.aip.org

©1999 by the Acoustical Society of America. This Standard may not be reproduced in whole or in part in any form for sale, promotion, or any commercial purpose, or any purpose not falling within the provisions of the Copyright Act of 1976, without prior written permission of the publisher. For permission, address a written request to the Standards Secretariat of the Acoustical Society of America.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Scope and field of application</td>
<td>1</td>
</tr>
<tr>
<td>2 References</td>
<td>2</td>
</tr>
<tr>
<td>3 Pertinent aspects of the balancing problem</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Representation of a state of unbalance</td>
<td>2</td>
</tr>
<tr>
<td>3.2 Unbalance effects</td>
<td>2</td>
</tr>
<tr>
<td>3.3 Rotors with one correction plane</td>
<td>2</td>
</tr>
<tr>
<td>3.4 Rotors with two correction planes</td>
<td>2</td>
</tr>
<tr>
<td>3.5 Assemblies</td>
<td>4</td>
</tr>
<tr>
<td>4 Permissible unbalance related to rotor mass</td>
<td>4</td>
</tr>
<tr>
<td>5 Quality grades relating service speed and permissible residual specific unbalance</td>
<td>8</td>
</tr>
<tr>
<td>6 Determination of balance quality requirements</td>
<td>4</td>
</tr>
<tr>
<td>6.1 General</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Balance quality requirements based on established grades</td>
<td>4</td>
</tr>
<tr>
<td>6.3 Balance quality requirements based on experimental determination</td>
<td>8</td>
</tr>
<tr>
<td>6.4 Balance quality requirements based on specified permissible bearing forces</td>
<td>8</td>
</tr>
<tr>
<td>7 Allocation of permissible residual unbalance to each correction plane on the basis of U_{per}</td>
<td>8</td>
</tr>
<tr>
<td>7.1 General</td>
<td>8</td>
</tr>
<tr>
<td>7.2 Single-plane balancing</td>
<td>9</td>
</tr>
<tr>
<td>7.3 Two-plane balancing</td>
<td>9</td>
</tr>
<tr>
<td>7.3.1 General</td>
<td>9</td>
</tr>
<tr>
<td>7.3.2 Simplified approximate methods</td>
<td>9</td>
</tr>
<tr>
<td>7.3.2.1 Distance between correction planes less than the bearing span (see figure 3)</td>
<td>9</td>
</tr>
<tr>
<td>7.3.2.2 Distance between correction planes greater than the bearing span (see figure 4)</td>
<td>10</td>
</tr>
<tr>
<td>7.3.2.3 Distance between correction planes smaller than one-third of the bearing span (see figure 5)</td>
<td>10</td>
</tr>
<tr>
<td>7.3.3 General methods</td>
<td>11</td>
</tr>
<tr>
<td>7.3.3.1 General method for all rotors (independent of phase angle)</td>
<td>11</td>
</tr>
<tr>
<td>7.3.3.2 General method for rotors where the distance between the correction planes is significantly smaller than the bearing span</td>
<td>12</td>
</tr>
<tr>
<td>8 Determination of the residual unbalances</td>
<td>12</td>
</tr>
<tr>
<td>8.1 Determination with a balancing machine</td>
<td>12</td>
</tr>
<tr>
<td>8.2 Determination by means of an amplitude-and phase-measuring device</td>
<td>12</td>
</tr>
<tr>
<td>8.3 Determination by measurements taken with a measuring device without phase indication</td>
<td>13</td>
</tr>
<tr>
<td>9 Sources of errors in balancing</td>
<td>14</td>
</tr>
<tr>
<td>9.1 Instrument read-out errors</td>
<td>14</td>
</tr>
<tr>
<td>9.2 Errors due to the drive and auxiliary equipment</td>
<td>14</td>
</tr>
</tbody>
</table>
Reporting .. 16
10.1 Balancing report .. 16

Annexes
A Conversion factors ... 16
B Example for the general method described in subclause
7.3.3.1 for two-plane balancing 17

Tables
1 Balance quality grades for various groups of representative
rigid rotors ... 7
2 Typical examples of recommended deviations 15

Figures
1 Different representations of the same state of unbalance
of a rigid rotor .. 3
2(a) Maximum permissible residual specific unbalance value
(in micrometers) corresponding to various balance quality
grades, G ... 5
2(b) Maximum permissible residual specific unbalance value
(in inches) corresponding to various balance quality grades, G ... 6
3 Rotor dimensions to be used for simplified method 10
4 Rotor with overhung disks at both ends 10
5 Rotors with couple correction planes I and II at a distance
b less than one-third of the bearing span l 11
6 Rotor dimensions to be used for general method calculations ... 11
7 Determination of the response of the permissible residual
unbalance to a trial mass .. 13
8 Test procedure for determining the residual unbalance in
one plane .. 14
9 Error sources in end-drive elements (see subclause 9.2) 15
B.1 Rotor dimensions ... 17
Foreword

[This foreword is for information only and is not a part of ANSI S2.19-1999, American National Standard Mechanical Vibration—Balance Quality Requirements of Rigid Rotors, Part 1: Determination of Permissible Residual Unbalance, Including Marine Applications.]

This Standard was developed under the jurisdiction of Accredited Standards Committee S2, Mechanical Vibration and Shock, using the American National Standards Institute (ANSI) Accredited Standards Committee Procedures. The Acoustical Society of America provides the Secretariat for Accredited Standards Committee S2, Mechanical Vibration and Shock. This Standard is the national parallel to ISO 1940-1:1986, Mechanical vibration—Balance quality requirements of rigid rotors—Part 1: Determination of permissible residual unbalance.

Accredited Standards Committee S2, Mechanical Vibration and Shock, under whose jurisdiction this Standard was developed, has the following scope:

Standards, specifications, methods of measurement and test, and terminology in the fields of mechanical vibration and shock and condition monitoring and diagnostics of machines, but excluding those aspects which pertain to biological safety, tolerance, and comfort.

At the time this Standard was submitted to Accredited Standards Committee S2, Mechanical Vibration and Shock, for approval, the membership was as follows:

D. J. Evans, Chair
R. F. Taddeo, Vice Chair
A. Brenig, Secretary

Acoustical Society of America .. D. J. Evans
American Industrial Hygiene Association R. F. Taddeo (Alt.)
Bruel & Kjaer Instruments .. L. H. Royster
Endevco Corp. .. R. D. Sill
National Electrical Manufacturers Association M. Alexander
National Institute of Standards and Technology J. Chow (Alt.)
PCB Piezotronics .. D. Rawlings
Sandia National Laboratories .. E. LaBrush (Alt.)
Schenck Trebel Corporation ... D. J. Evans
U.S. Naval Sea Systems Command ... R. F. Taddeo
U.S. Naval Warfare Center ... M. T. McGown (Alt.)
Vibration Institute .. P. Shang

This is a preview of "ANSI S2.19-1999 (R20...". Click here to purchase the full version from the ANSI store.
Individual experts of Accredited Standards Committee S2, Mechanical Vibration and Shock, were:

- P. K. Baade
- K. M. Eldred
- S. I. Hayek
- L. A. Herstein
- D. L. Johnson
- H. E. von Gierke

Working Group S2/WG65, Balancing Technology, which assisted Accredited Standards Committee S2, Mechanical Vibration and Shock, in the development of this Standard, had the following membership:

- R. K. Mehta, Chair
- K. Won, Vice Chair
- G. Antonides
- A. Brenig
- J. Csokmay
- B. Dittmar
- J. Jenkins
- A. Kukk
- E. Lambert
- M. T. McGown
- D. G. Stadlebauer
- R. Subbiah
- D. N. Walker

Suggestions for improvements of this Standard will be welcomed. Send suggestions for improvement to Accredited Standards Committee S2, Mechanical Vibration and Shock, in care of the ASA Standards Secretariat, 120 Wall Street, 32nd Floor, New York, NY 10005-3993, USA.

Telephone: +1 212 248 0373
Fax: +1 212 248 0146
E-mail: asastds@aip.org
American National Standard

Mechanical Vibration—
Balance Quality
Requirements of Rigid
Rotors, Part 1:
Determination of
Permissible Residual
Unbalance, Including
Marine Applications

0 Introduction

Balancing is the process of attempting to improve
the mass distribution of a body so that it rotates in
its bearings without unbalanced centrifugal forces.
Of course, this aim can be attained only to a cer-
tain degree; even after balancing, the rotor will
possess residual unbalance.

The measuring equipment available today enables
unbalance to be reduced to low limits. However, it
would be uneconomical to exaggerate the quality
requirements. It has therefore become necessary
to determine to what extent the unbalance should
be reduced, and where the optimum economic and
technical compromise on balance quality require-
ments would be struck.

It is not readily possible to draw conclusions as to
the permissible residual unbalances from any ex-
isting recommendations on the assessment of the
vibratory state of machinery, since there is often
no easily recognizable relation between the rotor
unbalance and the machine vibrations under oper-
ating conditions. The amplitude of the once-per-
revolution vibrations is influenced by characteris-
tics of the rotor, the machine, the structure and the
foundation, and by the proximity of the service
speed to the various resonance frequencies, etc.
Moreover, the machine vibrations may be due only
in part to the presence of rotor unbalance.

1 Scope and field of application

This part of S2.19 gives recommendations for de-
termining unbalance and for specifying related
quality requirements of rigid rotors. It specifies

(a) a representation of unbalance in one or two
planes;

(b) methods for determining permissible re-
sidual unbalance;

(c) methods for allocating it to the correction
planes;

(d) methods for identifying the residual unbal-
ance state of a rotor by measurement;

(e) a summary of errors associated with the re-
sidual unbalance identification.

In table 1 and figure 2 recommendations are given,
based on worldwide experience, concerning the
balance quality requirements of rigid rotors, ac-
cording to their type, mass, and maximum service
speed.

This part of S2.19 is also intended to facilitate the
relations between manufacturer and user of ma-
chines. Terminology specified in this part of S2.19
may be used for establishing technical specifica-
tions. [For definitions, see ANSI S2.7.]

Detailed consideration of errors associated with
the determination of residual unbalance is not in-
cluded in this standard. Nor does this standard de-
fine permissible residual unbalances for flexible ro-
tors; these are covered in ANSI S2.43. The
methods for balancing are not described.

The recommended balance quality grades are not
intended to serve as acceptance specifications for
any rotor group, but rather to give indications of
how to avoid gross deficiencies as well as exag-
gerated or unattainable requirements; they may
also serve as a basis for more involved investiga-
tions, for example, when a more exact determina-
tion of the required balance quality by measure-
ment in the laboratory or in the field is necessary.
If due regard is paid to the recommended limits,
satisfactory running conditions can most probably
be expected. However, there may be cases when
deviations from these recommendations become
necessary, e.g., because of unusual construction
or geometry.