ANSI/ASABE S572.3 (FEB2020)
Spray Nozzle Classification by Droplet Spectra

American Society of
Agricultural and Biological Engineers

ASABE is a professional and technical organization, of members worldwide, who are dedicated to advancement of engineering applicable to agricultural, food, and biological systems. ASABE Standards are consensus documents developed and adopted by the American Society of Agricultural and Biological Engineers to meet standardization needs within the scope of the Society; principally agricultural field equipment, farmstead equipment, structures, soil and water resource management, turf and landscape equipment, forest engineering, food and process engineering, electric power applications, plant and animal environment, and waste management.

NOTE: ASABE Standards, Engineering Practices, and Data are informational and advisory only. Their use by anyone engaged in industry or trade is entirely voluntary. The ASABE assumes no responsibility for results attributable to the application of ASABE Standards, Engineering Practices, and Data. Conformity does not ensure compliance with applicable ordinances, laws and regulations. Prospective users are responsible for protecting themselves against liability for infringement of patents.

ASABE Standards, Engineering Practices, and Data initially approved prior to the society name change in July of 2005 are designated as “ASAE”, regardless of the revision approval date. Newly developed Standards, Engineering Practices and Data approved after July of 2005 are designated as “ASABE”.

Standards designated as "ANSI" are American National Standards as are all ISO adoptions published by ASABE. Adoption as an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by ASABE.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

CAUTION NOTICE: ASABE and ANSI standards may be revised or withdrawn at any time. Additionally, procedures of ASABE require that action be taken periodically to reaffirm, revise, or withdraw each standard.

Copyright American Society of Agricultural and Biological Engineers. All rights reserved.

ASABE, 2950 Niles Road, St. Joseph, MI 49085-9659, USA, phone 269-429-0300, fax 269-429-3852, hq@asabe.org
Spray Nozzle Classification by Droplet Spectra

Developed by the ASAE Pest Control and Fertilizer Application Committee; approved by the Power and Machinery Division Standards Committee; adopted by ASAE August 1999; reaffirmed February 2004; revised March 2009; approved as an American National Standard March 2009, reaffirmed by ASABE December 2013, reaffirmed by ANSI January 2014; Corrigendum issued January 2014; reaffirmed by ASABE and ANSI December 2017; revised and approved by ASABE and ANSI July 2018, revised and approved by ASABE and ANSI February 2020.

Keywords: Chemicals, Drop size, Droplet, Fertilizer, Nozzle, Spray

1 Purpose and Scope

1.1 This Standard defines droplet spectrum categories for the classification of spray nozzles, relative to specified reference fan nozzles discharging spray into static air or so that no stream of air enhances atomization. The purpose of classification is to provide the nozzle user with droplet size information primarily to indicate off-site spray drift potential and secondarily for application efficacy.

1.2 This Standard defines a means for relative nozzle comparisons only based on droplet size. Other spray drift and application efficacy factors, such as droplet discharge trajectory, height, and velocity, air bubble inclusion; droplet evaporation; and impaction on target are examples of factors not addressed by the current Standard.

2 General

2.1 Liquid flow rate, liquid pressure, and physical changes to nozzle geometry and operation can affect the nozzle classification. A given nozzle can be classified into one or more droplet size categories, depending on the selection of flow rate, operating pressure, and other operational conditions.

2.2 Generally the Standard is based on spraying water through the reference nozzles and nozzles to be classified. However, spray liquid properties may affect droplet sizes and should be considered by the end user. Besides water, a surfactant-water mixture, with a dynamic surface tension of 40 ±2 dynes/cm at 10 to 20 ms, such as 9% (wt/wt) isopropanol or 0.1% (v/v) acetylenic diol (e.g. Surfynol™ 104) surfactant in water should be sprayed through the nozzles to be classified (1) that are claimed to reduce spray drift, or (2) that utilize pre-orifices or internal turbulence chambers especially for cases near a threshold between classification categories. If differing classifications (see 6 Nozzle Classification Procedures for Statistical Basis) are determined for water versus a mixture of water and surfactant, the finer of the two classifications should be reported.

2.3 Presentation of nozzle classification categories to nozzle users should use the standard category terms from 3.3. The presentation may use the symbols or color codes identified in 3.3, provided the corresponding standard category terms are identified in the presentation.

1 The referenced product is noted as an example and is not to be interpreted as a product endorsement.