ASAE EP413.2 FEB2010 (R2019)
Procedure for Establishing Volumetric Capacities of Cylindrical Grain Bins

American Society of Agricultural and Biological Engineers

ASABE is a professional and technical organization, of members worldwide, who are dedicated to advancement of engineering applicable to agricultural, food, and biological systems. ASABE Standards are consensus documents developed and adopted by the American Society of Agricultural and Biological Engineers to meet standardization needs within the scope of the Society; principally agricultural field equipment, farmstead equipment, structures, soil and water resource management, turf and landscape equipment, forest engineering, food and process engineering, electric power applications, plant and animal environment, and waste management.

NOTE: ASABE Standards, Engineering Practices, and Data are informational and advisory only. Their use by anyone engaged in industry or trade is entirely voluntary. The ASABE assumes no responsibility for results attributable to the application of ASABE Standards, Engineering Practices, and Data. Conformity does not ensure compliance with applicable ordinances, laws and regulations. Prospective users are responsible for protecting themselves against liability for infringement of patents.

ASABE Standards, Engineering Practices, and Data initially approved prior to the society name change in July of 2005 are designated as “ASAE”, regardless of the revision approval date. Newly developed Standards, Engineering Practices and Data approved after July of 2005 are designated as “ASABE”.

Standards designated as “ANSI” are American National Standards as are all ISO adoptions published by ASABE. Adoption as an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by ASABE.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

CAUTION NOTICE: ASABE and ANSI standards may be revised or withdrawn at any time. Additionally, procedures of ASABE require that action be taken periodically to reaffirm, revise, or withdraw each standard.

Copyright American Society of Agricultural and Biological Engineers. All rights reserved.

ASABE, 2950 Niles Road, St. Joseph, MI 49085-9659, USA, phone 269-429-0300, fax 269-429-3852, hq@asabe.org
ASAE EP413.2 FEB2010 (R2019)

Procedure for Establishing Volumetric Capacities of Cylindrical Grain Bins

Keywords: Bins, Capacities, Grain

1 Purpose and Scope

1.1 The purpose of this Standard is to define the method for determining the volumetric capacity and the calculated storage capacity of cylindrical grain bins. This method assumes that the bins are centrically filled.

1.2 The purpose is also to establish an industry standard for the estimation of compaction factors for all cylindrical bins.

2 Definitions and Nomenclature

2.1 bin diameter (D): Diameter of the bin measured from the centerline or neutral axis of the corrugated sidewalls, or the inside diameter of a smooth-walled bin.

2.2 open eave bins: Bins in which free passage of air between the sidewall and the roof is possible. These bins should be filled only to a height which is 25 mm (1 in.) below the eave height because of the likelihood of small grain passing through this space.

2.3 tight eave bins: Bins in which free passage of air between the sidewall and the roof is restricted. Although not airtight, the seal between the sidewall and roof prevents small grains from passing through this space.

2.4 roof slope: Slope or inclination of the bin roof measured in degrees from horizontal.

2.5 maximum angle of fill (α): Maximum angle that may be used for calculating the capacity of the roof area. This angle is measured from horizontal and shall be assumed as 28 deg.

2.6 eave height (EH): For the purpose of volume calculations, eave height is defined in Figure 1, along with other conditions described in this section.

2.6.1 bins with roof slopes greater than 28 deg: For these bins the eave height is defined as the distance from the top of the permanent structural floor to the top of the bin sidewall for tight eave bins or 25 mm (1 in.) less than the top of the sidewall for open eave bins (see Figs. 1a and 1b).

2.6.2 bins with roof slopes less than 28 deg: For these bins the eave height is defined as the distance from the top of the permanent structural floor to the height at which the grain intersects the bin sidewall (see Figure 1c).