ASCE 10-97

American Society of Civil Engineers

Design of Latticed Steel Transmission Structures

This document uses both Système International (SI) units and customary units.

ASCE 10-97

American Society of Civil Engineers

Design of Latticed Steel Transmission Structures

This document uses both Système International (SI) units and customary units.

Published by the American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191-4400

ABSTRACT

This standard provides requirements for the design of guyed and self-supporting latticed steel electrical transmission structures. They are applicable for hot-rolled and cold-formed steel shapes. Analysis techniques are outlined for the geometrical configurations presently in use. Procedures for the design of individual members reflect extensive experience and test data on steels with yield points up to 65 ksi. Connection design procedures allow the engineer to match connection design to the most suitable end and edge distances for detailing. If full-scale structure testing is required, procedures are outlined to assist in obtaining critical information. Design procedures cover structural steel members and connections used in foundations. The commentary provides supporting background data.

Library of Congress Cataloging-in-Publication Data

Design of latticed steel transmission structures / American Design of latticed steer transmiss Society of Civil Engineers. p. cm. — (ASCE standard) "ASCE 10-97." ISBN 0-7844-0324-4

1. Electric lines-Poles and towers-Design and con-L. Electric lines—Poles and towers—Design and con-struction. 2. Electric lines—Poles and towers—Testing. 3. Steel, Structural—Testing. I. American Society of Civil Engineers. II. Series: American Society of Civil En-gineers. ASCE standard. TH3242.D45 1998

621.319'22-dc21

98-41267 CIP

Photocopies. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clear-ance Center (CCC) Transactional Reporting Service, pro-vided that the base fee of \$8.00 per article plus \$.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0324-4/ 00/\$8 + .50. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Dept., ASCE.

Copyright © 2000 by the American Society of Civil Engineers, All Rights Reserved.

Library of Congress Catalog Card No: 98-41267 ISBN 0-7844-0324-4

Manufactured in the United States of America.

FOREWORD

The material presented in this Standard has been prepared in accordance with recognized engineering principles. This Standard and Commentary should not be used without first securing competent advice with respect to their suitability for any given application. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Society of Civil Engineers, or of any other person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability from such use. This page intentionally left blank

ACKNOWLEDGMENTS

In 1971, the American Society of Civil Engineers (ASCE) published the Guide for Design of Steel Transmission Towers, Manuals, and Reports on Engineering Practice-No. 52. Manual 52 has been used extensively in the United States and abroad as the basis for design specifications. In 1984, an ASCE task committee was established for updating Manual 52 to reflect new design procedures, availability of new shapes and materials, changes in loading criteria, and results of new test data. The second edition was published in 1988. In 1986, it was proposed that ASCE form a committee to develop a standard. The committee was established in 1987 and was chaired by Gene M. Wilhoite. The second edition of Manual 52 served as a resource in developing this Standard. although some of the formulas and examples differ slightly from those in the Manual. The previous work of the ASCE task committee on Manual 52 is greatly

Abolhassan Astaneh-Asl Edward P. Becker David G. Brinker Donald D. Cannon, Jr. Bing C. Chan Clayton L. Clem, Chair Dana R. Crissey Martin L. De la Rosa George E. Fortney Charles Garcia Edwin H. Gaylord Jerome G. Hanson Leon Kempner, Jr., Secretary appreciated. The first edition of ANSI/ASCE 10 was approved by ANSI on December 9, 1991.

In 1992 the committee began considering revisions to the first edition. At that time it was determined that the Standard had not been in use long enough to warrant substantial changes to the design requirements; however, it was decided that all relevant illustrations and examples from previous editions of Manual 52 required for the proper implementation of the standard would be incorporated into this revision.

This Standard was prepared through the consensus standards process by balloting in compliance with procedures of ASCE's Management Group F on Codes and Standards. Those individuals who serve on the Design of Steel Transmission Towers Standards Committee are:

Massoud Khavari, Vice Chair William A. Klenk Jacob Kramer Richard A. Kravitz Walter P. Moore, Jr. Robert E. Nickerson Robert L. Patterson Alain H. Peyrot Ronald E. Randle David Tennent Harold N. Wentzel Leslie H. Williams Adolfo Zavelani-Rossi

The Committee thanks Ms. Rhonda L. Raty for her secretarial support and patience during the development and revision of this Standard.

This page intentionally left blank

CONTENTS

STA N	DARDS			Ľ	age			
FORE	WORD	•••••	•••••		v			
ACKN	NOWI FDC	MENTS	•••••		vii			
/ terti		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			• 11			
1.0	General				. 1			
	1.1	Scope			. 1			
	1.2	Applicabl	e Documer	ts	. 1			
	1.3	Definition	IS		. 1			
2.0	Loading	, Geometr	y, and Anal	ysis	. 2			
	2.1	Introducti	on		. 2			
	2.2	Loads			. 2			
	2.3	Geometrie	c Configura	tions	. 2			
	2.4	Methods	of Analysis		. 2			
3.0	Design	of Member	rs		. 2			
	3.1	Introducti	on		. 2			
	3.2	Material.			. 2			
	3.3	Minimum	Sizes		. 3			
	3.4	Slenderne	ess Ratios		. 3			
	3.5	Properties	s of Sectior	IS	,. 3			
	3.6	6 Design Compression Stress						
	3.7	Compress	sion Memb	ers: Angles				
		3.7.1	Maximum	w/t Ratio	3			
		3.7.2	Design Co	ompressive Stress	3			
		3.7.3	Determina	tion of F_a	4			
		3.7.4	Effective	Lengths	4			
			3.7.4.1	Leg Members	4			
			3.7.4.2	Other Compression Members	4			
			3.7.4.3	Redundant Members	5			
			3.7.4.4	Unsupported Length with Varying Forces	6			
			3.7.4.5	Joint Restraint	6			
			3.7.4.6	Test Verification	6			
	3.8	Compress	sion Memb	ers: Symmetrical Lipped Angles	6			
		3.8.1	Maximum	w/t Ratio	6			
		3.8.2	Design Co	ompressive Stress	6			
		3.8.3	Equivalen	t Radius of Gyration	6			
		3.8.4	Minimum	Lip Depth	7			
	3.9	Compress	sion Memb	ers Not Covered in Sections 3.7 and 3.8	7			
		3.9.1	Design Co	ompressive Stress	7			
		3.9.2	Maximum	<i>w/t</i> Ratio	7			
		3.9.3	Effective	Widths of Elements in Compression	7			
			3.9.3.1	Uniformly Compressed Elements	7			
			3.9.3.2	Elements with Stress Gradient	8			
		3.9.4	Doubly S	ymmetric Open Cross-Sections	8			
		3.9.5	Singly Sy	mmetric Open Cross-Sections	8			
		3.9.6	Point-Syn	ametric Open Cross-Sections	9			
		3.9.7	Closed Cr	oss-Sections	9			
		3.9.8	Nonsymm	etric Cross-Sections	9			
		3.9.9	Lips		9			
		3.9.10	Eccentric	Connections	9			

	3.10	Tension	Members	. 9	
		3.10.1	Design Tensile Stress	9	
		3.10.2	Angle Members	9	
		3.10.3	Eccentric Connections	. 9	
		3.10.4	Threaded Rods and Anchor Bolts	. 9	
		3.10.5	Guys	10	
	3.11	Stitch Be	blts	10	
	3.12	Axial Co	ompression and Bending	10	
	3.13	3 Axial Tension and Bending			
	3.14	Beams			
		3.14.1	Properties of Sections.	11	
		3.14.2	Design Tension.	11	
		3.14.3	Laterally Supported Beams.	11	
		3 14 4	I Channel and Cruciform Sections	11	
		3 14 5	Other Doubly Symmetric Open Sections	12	
		3 14 6	Singly Symmetric L and T Sections	12	
		3 14 7	Other Singly Symmetric Open Sections	12	
		3 14 8	Faual Leg Angles	12	
	3 15	Design 9	Shear	14	
	5.15	3 15 1	Beam Webs	14	
		3 15 2	Angles	14	
	3 16	Test Ver	ification	14	
	5.10	1050 701	induiton		
4.0	Design	of Conne	ctions	15	
4.0	4.1	Introduc	tion	15	
	4.2	General	General Requirements		
	4.3	Fastener	S	15	
		4.3.1	Materials	15	
		4.3.2	Bolt Shear Capacity	15	
		4.3.3	Bolt Tension Capacity	15	
		4.3.4	Bolts Subject to Combined Shear and Tension	15	
	4.4	Design 1	Bearing Stress	15	
	4.5	Minimu	m Distances	15	
		4.5.1	End Distance	15	
		4.5.2	Center-to-Center Bolt Hole Spacing	16	
		4.5.3	Edge Distance	16	
	4.6	Attachm	ent Holes	16	
	4.7	Test Ver	ification	16	
5.0	Dataili	ng and P-1	hrization	16	
5.0	5 1	ng and ra	on i cation	16	
	5.1	5 1 1	Descuire 22	16	
		5.1.1	Drawings	10	
		J.1.2	Approval of Shop Drawings	10	
		J.1.5	Dale Crasing	17	
		5.1.4 5.1.5	Dolt Spacing	17	
		5.1.5	Detail Failures During lesting	17	
		5.1.6		17	
		5.1.7	Weathering Steel	17	
		5.1.8	Tension-Only Members	17	
		5.1.9	Shop Check Assembly	17	
		5.1.10	Other Considerations	17	

	5.2	Fabricati	ion		17			
		5.2.1	Material.		17			
		5.2.2	Specificat	ions	17			
		5.2.3	Shop Ope	erations	17			
		524	Piece Ma	rke	18			
		525	Welding	18.3	18			
		526	Galvanizi	na	18			
		527	Shipping	ng	10			
		J.2.1	Sinpping.		10			
6.0	Testing				18			
	6.1	Introduc	tion		18			
	6.2	Foundat	ions		18			
	6.3	Material			18			
	6.4	Fabricat	ion		18			
	6.5	Strain Measurements						
	6.6	Assemb	ly and Erect	tion	18			
	67	Test Loz	ads		19			
	6.8	Load Ar	plication		19			
	69	Loading	Procedure		19			
	6.10	Load M	easurement		19			
	6.11	Deflecti			10			
	6.12							
	6.12	Disposit	ion of Prote	stuna	10			
	6.14	Disposit		луре	20			
	0.14	Report	••••••		20			
70	Structu	Structural Members and Connections Used in Foundations						
7.0	7 1	Introduc	tion		20			
	7.1	General Considerations						
	1.2	7.2.1 Steel Grillages						
		7.2.2 Pressed Plates						
		7.2.2	Stub Ang	1405	21			
		7.2.5	Anchon E	155	21			
		1.2.4		Smooth Para with Paga Assambly in Contact with Congrets	21			
			1.2.4.1	sinooui Bais will Base Assembly in Contact will Concrete	21			
			7040	Or Ofour with Dage Assembly in Contact with Congrets	21			
			1.2.4.2	or Crowt	21			
			7742	Or Grout	21			
			1.2.4.5	Sinooth of Deformed Bars with Base Assembly Not in Contact with	21			
	70	Detaile	Constant	Concrete of Grout	21			
	1.5	Deterior	ation Consi	derations	22			
	1.4	Design	of Stub Ang	gles and Anchor Bolts	22			
		7.4.1	Stub Ang	les in Concrete	. 22			
		7.4.2 Anchor Bolts with Base Assembly in Contact with Concrete or Grout						
	7.5	Design Requirements for Concrete and Reinforcing Steel			23			
		7.5.1	Stub Ang	les	23			
		7.5.2	Smooth I	Bar Anchor Bolts	23			
			7.5.2.1	Minimum Embedment for Anchor Bolts	23			
		7.5.3	Deformed	d Bar Anchor Bolts	23			
	7.6	Shear Connectors						
		7.6.1	Stud She	ar Connectors	. 24			
		7.6.2	Angle Sh	ear Connectors	. 24			
	7.7	Test Ver	rification		. 24			

8.0	Quality Assurance/Quality Control				
	8.1	ntroduction	24		
	8.2	Quality Assurance	24		
	8.3	Quality Control	24		
Comme	entary				
C2.0	Loading	Geometry, and Analysis	25		
	C2.1	ntroduction	25		
	C2.2	Loads	25		
	C2.3	Geometric Configurations	25		
	C2.4	Methods of Analysis	26		
C3.0	Design of Members				
	C3.1	Introduction	30		
	C3.2	Material	31		
	C3.3	Minimum Sizing	31		
	C3.4	Slenderness Ratios	31		
	C3.5	Properties of Sections	31		
	C3.6	Design Compression	31		
	C3.7	Compression Members: Angles	31		
		C3.7.3 Determination of F_a	32		
		C3.7.4 Effective Lengths	32		
		C3.7.4.4 Unsupported Length with Varying Forces	32		
	C3.8	Compression Members: Symmetrical Lipped Angles	34		
	C3.9	Compression Members Not Covered in Sections 3.7 and 3.8	34		
		C3.9.2 Maximum w/t Ratio	34		
		C3.9.3 Effective Widths of Elements in Compression	34		
		C3.9.8 Nonsymmetric Cross-Sections	34		
	C3.10	Tension Members	36		
		C3.10.5 Guys	36		
	C3.12	Axial Compression and Bending	36		
	C3.13	Axial Tension and Bending	36		
	C3.14	Beams	36		
		C3.14.4 I, Channel, and Cruciform Sections	36		
		C3.14.6 Singly Symmetric I and T Sections	37		
		C3.14.7 Other Singly Symmetric Open Sections	37		
		C3.14.8 Equal Leg Angles	37		
	C3.15	Design Shear	37		
		C3.15.1 Beam Webs	37		
<i></i>	. .		a -		
C4.0	Design of Connections				
	C4.1	24.1 Introduction			
	C4.3	Fasteners	37		
		C4.3.2 Bolt Shear Capacity	37		
		C4.3.3 Bolt Tension Capacity	38		
		C4.3.4 Bolts Subject to Combined Shear and Tension	38		
	C4.4	Design Bearing Stress	38		
	C4.5	Minimum Distances	38		
		C4.5.1 End Distance	38		
		C4.5.2 Center-to-Center Bolt Hole Spacing	41		

		C4.5.3	Edge Distance	41		
	C4.6	Attachme	nt Holes	41		
C6.0	Tecting			42		
	C6 1	Introducti	∩n	42		
	C6.2	Foundatic	vnc	42		
	C0.2		General	43		
		C6.2.1	Rigid Structures	43		
		C623	Direct Embedded Structures	43		
		00.2.5	C6231 Embedded Portion	43		
			C6232 Above-Ground Portion	43		
		C6.2.4	Components	43		
	C6.3	Material	Compensation	43		
	C6 4	Fabricatic	n	43		
	C6.5	Strain Measurements				
	C6.6	Assembly and Erection				
	C6.8	Load Application				
	C6.9	Loading 1	Procedures	44		
	C6.10	Load Me	asurement	45		
	C6.11	Deflection	18	45		
	C6.13	Dispositio	on of Prototype	45		
		-				
C7.0	Structu	Structural Members and Connections Used in Foundations				
	C7.1	Introducti	on	45		
	C7.2	General (Considerations	45		
	67 0	C7.2.2	Pressed Plates	45		
	C7.3	Deterioration Considerations				
	C7.5	Design R	equirements for Concrete and Reinforcing Steel	45		
	C7.6	Shear Co	nnectors	40		
		C7.6.1	Stud Snear Connectors.	40		
		C7.0.2	Angle Snear Connectors	40		
8.0	Quality	Quality Assurance/Quality Control				
	C8.1	Introduction				
	C8.2	Quality Assurance				
	C8.3	Quality Control				
Refere	ences			48		
Apper	idix A—	Notation		50		
Apper	idix B—	Examples.		52		
		Example I	Equal Leg Angle with Symmetrical Bracing	52		
		Example 2	Effect of End Connections on Member Capacity	53		
		Example 3	Concentric Loading, Iwo Angle Member	54		
		Example 4	K-Bracing, IWO Angle Member	54		
		Example 5	Effect of Subdivided Panels and End Connections	56		
		Example 6	Concentric Loading, Iwo Angle Member, Subdivided Panels	57		
		Example 7	A-Brace Systems with No Intermediate Redundant Support	38		
		Example 8	A-вгасе Systems with Intermediate Redundant Support—Case 1	39		
		Example 9	A-Brace Systems with Intermediate Redundant Support—Case 2	00		

Example 10	Cold-Formed Angle	61
Example 11	Colded-Formed Lipped Angle	62
Example 12	M-Section as Column Member	63
Example 13	Channel as Column	64
Example 14	T-Section as Column	65
Example 15	Schifflerized Angle with Symmetrical Bracing	67
Example 16	Schifflerized Angle with Unsymmetrical Bracing	68
Index		70

Design of Latticed Steel Transmission Structures

1.0 GENERAL

1.1 SCOPE

Design of Latticed Steel Transmission Structures specifies requirements for the design, fabrication, and testing of members and connections for electrical transmission structures. These requirements are applicable to hot-rolled and cold-formed steel shapes. Structure components (members, connections, guys) are selected to resist design-factored loads at stresses approaching yielding, buckling, fracture, or any other limiting condition specified in this Standard.

1.2 APPLICABLE DOCUMENTS

The following standards are referred to in the body of this document.

American Society for Testing and Materials (ASTM) Standards:

A6/A6M REV A-96 Standard Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use.

A36/A36M REV B-96 Standard Specifications for Structural Steel.

A123 REV A-89 Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products.

A143-74 Standard Practice for Safeguarding Against Embrittlement of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embrittlement.

A153/A153M-95 Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware.

A242/A242M REV A-93 Standard Specification for High-Strength Low-Alloy Structural Steel.

A394-93 Standard Specification for Zinc-Coated Steel Transmission Tower Bolts, Zinc-Coated and Bare.

A529/A529M-94 Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality.

A563-94 Standard Specification for Carbon and Alloy Steel Nuts.

A563M-93 Standard Specification for Carbon and Alloy Steel Nuts (Metric).

A570/A570M-95 Standard Specification for Steel, Sheet and Strip, Carbon, Hot-Rolled Structural Quality. A572/A572M REV C-94 Standard Specification for High-Strength Low-Alloy Columbium–Vanadium Structural Steel.

A588/A588M-94 Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 in. (100 mm) Thick.

A606-96 Standard Specification for Steel, Sheet and Strip, High-Strength Low-Alloy Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistanace.

A607-96 Standard Specification for Steel, Sheet and Strip, High-Strength Low-Alloy Columbium or Vanadium, or Both, Hot-Rolled and Cold-Rolled.

A715-96 Standard Specification for Steel, Sheet and Strip, High-Strength Low-Alloy Hot-Rolled and Cold-Rolled, and Steel Sheet, Cold-Rolled, High-Strength Low-Alloy with Improved Formability.

American Welding Society Standard:

AWS D1.1-96 Structural Welding Code Steel.

1.3 DEFINITIONS

Block shear: a combination of shear and tensile failure through the end connection of a member caused by high bolt forces acting on the material; also called rupture.

Deformed bars: steel bars meeting the requirements of ACI 318 for reinforcing bars.

Design-factored load: unfactored load multiplied by a specified load factor to establish the design load on a structure.

Downthrust: the downward vertical component of the loads on a foundation.

Leg member: a primary member that serves as the main corner support member of a structure; sometimes called a post member.

Line security: criteria established to prevent a progressive (cascade) failure of structures.

Load factor: a multiplier used with the assumed loading condition, or unfactored load, to establish the design-factored load.

Primary members: tension or compression members that carry the loads on the structure to the foundation.

Redundant members: members that reduce the unbraced length of primary members by providing intermediate support.