ASCE 4-98

ASCE STANDARD

American Society of Civil Engineers Seismic Analysis of Safety-Related Nuclear Structures and Commentary

This document uses both Système International (SI) units and customary units.

American Society of Civil Engineers

Seismic Analysis of Safety-Related Nuclear Structures and Commentary

This document uses both Système International (SI) units and customary units.

This page intentionally left blank

American Society of Civil Engineers

Seismic Analysis of Safety-Related Nuclear Structures and Commentary

This document uses both Système International (SI) units and customary units.

Published by the American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191-4400

ABSTRACT

This standard provides requirements for performing analyses for the purpose of new structure design or existing structure evaluation that will lead to the reliability of structures under earthquake motions. The goal of this standard is to provide rules and analysis parameters that are expected to produce seismic responses that have about the same probability of non-exceedance as the input. Specifications of input motions are provided. Analysis standards are given for modeling of structures, analysis of structures, soil-structure interaction modeling and analysis, input for subsystem seismic analysis, and special structures such as buried pipes and conduits, earth-retaining walls, above-ground vertical tanks, raceways, and seismic-isolated structures. Non-mandatory Appendix A provides a discussion on Seismic Probabilistic Risk Assessments and Seismic Margin Assessments.

Library of Congress Cataloging-in-Publication Data

American Society of Civil Engineers.

Seismic analysis of safety-related nuclear structures and commentary / American Society of Civil Engineers.

p. cm. Includes bibliographical references and index.

ISBN 0-7844-0433-X 1. Nuclear facilities—Evaluation—Standards---United States. 2. Earthquake resistant design—Standards-United States. 3. Buildings—Earthquake effects. I Title

TK9152,163 .A47 1999 621.48'35-dc21

99-051970

Photocopies. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, pro-vided that the base fee of \$8.00 per article plus \$.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0433-X/ 00/\$8.00 + \$.50 per page. Requests for special permission or bulk copying should be addressed to Permissions & Copy-right Dept., ASCE.

Copyright © 2000 by the American Society of Civil Engineers, All Rights Reserved. Library of Congress Catalog Card No: 99-051970 ISBN 0-7844-0433-X Manufactured in the United States of America.

STANDARDS

In April 1980, the Board of Direction approved ASCE Rules for Standards Committees to govern the writing and maintenance of standards developed by the Society. All such standards are developed by a consensus standards process managed by the Management Group F (MGF), Codes and Standards. The consensus process includes balloting by the balanced standards committee made up of Society members and nonmembers, balloting by the membership of ASCE as a whole, and balloting by the public. All standards are updated or reaffirmed by the same process at intervals not exceeding 5 years.

The following Standards have been issued.

- ANSI/ASCE 1-82 N-725 Guideline for Design and Analysis of Nuclear Safety Related Earth Structures
- ANSI/ASCE 2-91 Measurement of Oxygen Transfer in Clean Water
- ANSI/ASCE 3-91 Standard for the Structural Design of Composite Slabs and ANSI/ASCE 9-91 Standard Practice for the Construction and Inspection of Composite Slabs
- ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures
- Building Code Requirements for Masonry Structures (ACI 530-99/ASCE 5-99/TMS 402-99) and Specifications for Masonry Structures (ACI 530.1-99/ASCE 6-99/TMS 602-99)
- ASCE 7-98 Minimum Design Loads for Buildings and Other Structures
- ANSI/ASCE 8-90 Standard Specification for the Design of Cold-Formed Stainless Steel Structural Members

ANSI/ASCE 9-91 listed with ASCE 3-91

- ASCE 10-97 Design of Latticed Steel Transmission Structures
- SEI/ASCE 11-99 Guideline for Structural Condition Assessment of Existing Buildings
- ANSI/ASCE 12-91 Guideline for the Design of Urban Subsurface Drainage
- ASCE 13-93 Standard Guidelines for Installation of Urban Subsurface Drainage
- ASCE 14-93 Standard Guidelines for Operation and Maintenance of Urban Subsurface Drainage
- ASCE 15-98 Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations (SIDD)

ASCE 16-95 Standard for Load and Resistance Factor Design (LRFD) of Engineered Wood Construction

- ASCE 17-96 Air-Supported Structures
- ASCE 18-96 Standard Guidelines for In-Process Oxygen Transfer Testing
- ASCE 19-96 Structural Applications of Steel Cables for Buildings
- ASCE 20-96 Standard Guidelines for the Design and Installation of Pile Foundations
- ASCE 21-96 Automated People Mover Standards— Part 1
- ASCE 21-98 Automated People Mover Standards— Part 2
- SEI/ASCE 23-97 Specification for Structural Steel Beams with Web Openings
- ASCE 24-98 Flood Resistant Design and Construction
- ASCE 25-97 Earthquake-Actuated Automatic Gas Shut-Off Devices

FOREWORD

The material presented in this publication has been prepared in accordance with recognized engineering principles. This Standard and Commentary should not be used without first securing competent advice with respect to their suitability for any given application. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Society of Civil Engineers, or of any other person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability from such use.

PREFACE

There are four steps in the design and construction process that lead to the reliability of nuclear safety-related structures under earthquake motions:

- 1. Definition of the seismic environment;
- 2. Analysis to obtain response information;
- Design or evaluation of the various structural elements;
- 4. Construction.

In the practice of structural engineering design and construction, sufficient conservatism is intentionally added in order to achieve the desired performance. The purpose of this standard is to provide requirements for performing Step 2 for design of new facilities. This standard may also be used for evaluation of existing facilities. The intent of the analysis methodology is that the output parameters maintain about the same probability of non-exceedance as the input. This is accomplished by specifying methods for analysis with essentially no conservative bias except for small levels of conservatism added only to account for modeling uncertainties such as selection of material properties, mass, geometry, and damping. For example, use of this standard will produce seismic responses that have about a 90% chance of not being exceeded for an input response spectrum specified at the 84th percentile non-exceedance level. No attempt has been made to compensate for excess conservatism or lack of conservatism in the other steps.

In response to changing perceptions of seismic hazard for operating facilities or for quantification of risk or margin for new facilities, evaluation of facilities for seismic events beyond the design basis may be performed. This is discussed in Appendix A, which is nonmandatory.

Techniques other than those specified in this standard, including experience gained from past earthquakes, special analyses, and testing may also be used. However, such alternative methodologies shall be properly substantiated and shall conform to the intent of this standard.

v

ACKNOWLEDGMENTS

The American Society of Civil Engineers (ASCE) acknowledges the work of the Nuclear Standards Consensus Committee and the Working Group on Revision of ASCE Standard 4.

Nuclear Standards Consensus Committee

J. D. Stevenson, Chairman

J. Antebi	A. K. Gupta
D. L. Becker	R. P. Kassawara
J. G. Bennett	R. P. Kennedy
J. F. Costello	W. S. LaPay
F. Feng	T. R. Satyan-Sharma
J. P. Gnaedinger	P. J. Wang

Working Group on Revision of ASCE Standard 4 Seismic Analysis of Safety Related Nuclear Structures

R. C. Murray, Chairman T. A. Nelson, Vice-Chairman

J. G. Bennett	N. C. Karanjia
T. M. Cheng	R. P. Kassawara
C. J. Costantino (Section 2 Lead)	R. M. Kenneally
H. J. Dahlke	C. A. Kircher
J. M. Eidinger	D. P. Moore (Appendix A Lead)
C, R. Farrar	T. A. Nelson (Section 3.1 & 3.2 Lead)
R. P. Gallagher	D. A. Nuta (Section 3.3 Lead)
L. D. Gerdes	E. Odar
R. C. Guenzler	M. S. Power
A. K. Gupta	N. Prasad (Section 3.5 Lead)
A. H. Hadjian	J. W. Reed
Q. A. Hossain	S. A. Short
J. J. Johnson	A. K. Singh
A. F. Kabir	K. M. Vashi (Section 3.4 Lead)

Original Working Group on ASCE 4-86 Seismic Analysis of Safety-Related Nuclear Structures

R. P. Kennedy, Chairman R. P. Gallagher, Vice-Chairman

' W/ I 1m
C. W. LIII
D. P. Moore
D. A. Nuta
M. S. Power
I. W. Reed
A. K. Singh
R. J. Stuart
C. V. Subramanian
Y. K. Tang
G. R. Thiers
K. M. Vashi

CONTENTS

ACKN	NOWLED	GMENTS	vi
Stand	ard		
1.0	GENE	RAL	1
1.1	INTRO	DUCTION	1
	1.1.1	Purpose	1
	1.1.2	Scope	1
		1.1.2.1 Types of Structures Covered by This Standard	1
		1.1.2.2 Foundation Material Stability	1
	1.1.3	General Requirements	1
		1.1.3.1 Use of Analysis Results	1

Alternative Methodologies.....

PREFACE

1.1.3.2

3.1.2.2

1.2

1.2	DEFIN	TTIONS			1
1.3	NOTA	ΓΙΟΝ			2
2.0	SEISM	IC INPUT	Γ		4
2.1	SEISM	IC GROU	ND MOTI	ONS	4
	2.1.1	General	Requirement	nts	4
2.2	RESPO	DNSE SPE	CTRA		5
	2.2.1	General	Requirement	nts	5
	2.2.2	Site-Spe	cific Horizo	ontal Response Spectra	5
	2.2.3	Site-Ind	ependent H	prizontal Response Spectra	5
	2.2.4	Vertical	Response S	pectra	6
2.3	TIME	HISTORI	ES	•	6
2.4	POWE	R SPECT	RAL DENS	ITY FUNCTIONS	8
	2.4.1	PSD Co	mputed from	m Time Histories	8
2.5	ADDI	FIONAL F	REQUIREM	ENTS FOR STRUCTURES SENSITIVE TO LONG	
	PERIO	D MOTIO	DNS		8
	2.5.1	Spectral	Shape		9
	2.5.2	Time H	istories		9
3.0	ANAL	YSIS			9
3.1	MODE	ELING OF	STRUCTU	JRES	9
	3.1.1	General	Requireme	nts	9
		3.1.1.1	Models fo	r Horizontal and Vertical Motions	9
		3.1.1.2	Multistep	and One-Step Methods of Seismic Response Analysis	9
			3.1.1.2.1	Models for multistep analysis	10
			3.1.1.2.2	Models for one-step analysis	10
		3.1.1.3	Discretiza	tion Considerations	10
			3.1.1.3.1	Selection of finite element type	10
			31132	Selection of mesh size	10
			31133	Reduction of dynamic degrees of freedom	10
	312	Structur	al Material	Properties	10
	J. 1 140	3.1.2.1	Modulus	of Elasticity and Poisson's Ratio	10
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31211	Concrete	10
			31212	Steel	10
			3.1.2.1 3	Aluminum	10

Damping

10

v

1

SEISMIC ANALYSIS OF SAFETY-RELATED NUCLEAR STRUCTURES

3.1.3	Modeling	g of Stiffness
	3.1.3.1	Stiffness of Reinforced Concrete Elements.
3.1.4	Modelin	g of Mass
	3.1.4.1	Discretization of Mass
	3.1.4.2	Determination of Modal Mass
315	Modelin	g of Damning
	3151	Damping Properties of Structures
	511.511	3.1.5.1.1 Proportional damping (Payleigh damping)
	3152	Composite Damping
	J.1.J.2	2 1 5 2 1 Substructures with Known Domning Dation
		2.1.5.2.1 Substructures with Damping Kallos
	2152	S.1.5.2.2 Substructures with Proportional Damping
	3.1.3.3	Composite Modal Damping
	3.1.3.4	Alternate Composite Modal Damping
3.1.6	Modelin	g of Hydrodynamic Effects
	3.1.6.1	General Requirements
	3.1.6.2	Dynamic Analysis Formulation for Submerged Structures
	3.1.6.3	Building Model Hydrodynamic Mass Effects
3.1.7	Dynamic	c Coupling Criteria
	3.1.7.1	General Requirements
	3.1.7.2	Single-Point Attachment
	3.1.7.3	Multipoint Attachment and Static Constraint
3.1.8	Requirer	ments for Modeling Specific Structures
	3.1.8.1	General Requirements
		3 1 8.1.1 Structures with rigid floors
		31812 Structures with flexible floors
		31813 Requirements for lumped-mass stick models
	3182	Paquirements for Erame Structures
	2102	Dequirements for Cheen Wall Structures
	2104	Designments for Shear-wall Structures
	3.1.0.4	Requirements for Plate and Snell Structures
A % 7 A T	3.1.8.3 Vete of (Requirements for Adjacent Structures
ANAL	ASIS OF 3	STRUCTURES
3.2.1	General	Requirements
3.2.2	Time Hi	istory Method
	3.2.2.1	General Requirements
	3.2.2.2	Linear Methods
		3.2.2.2.1 Modal superposition
		3.2.2.2.2 Direct integration
	3.2.2.3	Nonlinear Methods
3.2.3	Respons	se Spectrum Method
	3.2.3.1	Linear Methods
	3.2.3.2	Nonlinear Methods
3.2.4	Complex	x Frequency Response Method
	3241	General Requirements
	3747	Response Time History
	3712	Methods to Compute Transfor Eurotions
275	5.4.4.3 Equival	ant Statia Mathad
3.2.3		
	3.2.3.1	General Requirements
	3.2.5.2	Cantilever Models with Uniform Mass Distribution
	3.2.5.3	Other Simple Structures
3.2.6	Multiply	y-Supported Systems
	3.2.6.1	General Requirements
	3.2.6.2	Time History Method

3.2

CONTENTS

		3.2.6.3	Response Spectrum Method	22
	3.2.7	Combina	ation of Modal and Component Responses	22
		3.2.7.1	Response Spectrum Analysis	22
			3.2.7.1.1 General modal combination rule	22
			3.2.7.1.2 Combination of spatial components	23
			3.2.7.1.3 Multiple response parameters	23
		3.2.7.2	Combination of Spatial Components for Time History Analysis	24
33	SOIL-S	TRUCTU	IRE INTERACTION MODELING AND ANALYSIS	24
0.0	331	General	Requirements	24
	5.5.1	3311	Fived-Base Analysis	24
		3317	Spatial Variations of Free Field Motion	25
		2212	Three Dimensional Effects	25 25
		3.3.1.3	Marlinean Debauiar of Soil	25 25
		3.3.1.4	Noninear Benavior of Sol.	25
		3.3.1.5	Structure-to-Structure Interaction	25
		3.3.1.6	Effect of Mat and Lateral Wall Flexibility	25
		3.3.1.7	Uncertainties in SSI Analysis	25
		3.3.1.8	Model of Structure	26
		3.3.1.9	Embedment Effects	26
		3.3.1.10	Wave Incoherence	26
	3.3.2	Subsurfa	ace Material Properties	26
		3.3.2.1	General Requirements	26
		3.3.2.2	Shear Modulus	26
		3.3.2.3	Material (Hysteretic) Damping Ratio	26
		3.3.2.4	Poisson's Ratio	26
	3.3.3	Direct M	Method	26
		3.3.3.1	Seismic Input for Model Boundaries	27
		3.3.3.2	Lower Boundary	27
		3.3.3.3	Selection of Lateral Boundaries	27
		3.3.3.4	Soil Element Size	28
		3.3.3.5	Time Step and Frequency Increment	28
	3.3.4	Impedar	nce Method	28
		3341	Determination of Input Motion	28
		3347	Determination of Foundation Impedance Functions	29
		5.5.4.2	3 3 4 2 1 Equivalent foundation dimensions	29
			2.2.4.2.2. Uniform coil sites	20
			2.2.4.2.2 Uniform solt sites	29
			2.2.4.2.4 Embedded foundations	27
		7747	5.5.4.2.4 Embedded foundations.	29
2.4		3.3.4.3 COD 011	Analysis of Coupled Son-Structural System	20
3.4		FOR SU	JBSYSTEM SEISMIC ANALYSIS	20
	3.4.1	General	Requirements	20
		3.4.1.1	Types of Seismic Input for Subsystem Analysis	30
		3.4.1.2	Direction and Locations for In-Structure Response Spectra or	.
			Time Histories	31
		3.4.1.3	Subsystem Input Away from Reference Location	31
		3.4.1.4	In-Structure Displacements and Rotations	31
	3.4.2	In-Struc	cture Response Spectra	31
		3.4.2.1	Methods for Generation of In-Structure Response Spectra	31
			3.4.2.1.1 Time history method	31
			3.4.2.1.2 Direct spectra-to-spectra methods	32
		3.4.2.2	Frequency Interval for Generation of In-Structure Response Spectra	32
		3.4.2.3	Treatment of Uncertainties in Generating In-Structure Response	
			Spectra	32

		3.4.2.4	Interpolati	on of In-Structure Response Spectra for Intermediate	
			Damping.		2
	3.4.3	In-Struc	ture Time H	History Motions	3
		3.4.3.1	Methods f	For Generation of In-Structure Time History Motions	3
		3.4.3.2	Equivalen	t Broadening and Lowering of In-Structure	
			Time Hist	orv Motions	3
		3.4.33	Time Inter	rval and Data Precision Requirements for In-Structure	Ũ
		51112115	Time Hist	ory Motions	3
	344	Structur	al Model or	Characteristics for Counled Subsystem Analysis	13
	2.1.1	3441	Supporting	soil-Structure Model	13
		3447	Base Exci	tation 3	13
35	SPECI	AL STRU	CTURES	2	12
5.5	351	General General	Requirement	nto 2	10
	252	Duried 1	Requirement Pipes and C	$\frac{1}{2}$	13 14
	5.5.2	2521	Straight S	ondulits)4
		3.3.2.1	on Internet	ections Remote from Anchor Points, Sharp Bends,	• 4
			or intersed	Manihum anial statistics of the)4 . 4
			3.5.2.1.1	Maximum axial strain ignoring friction	14
			3.5.2.1.2	Maximum axial strain considering friction	4
			3.5.2.1.3	Maximum curvature	4
			3.5.2.1.4	Maximum joint displacement and rotation in	_
			_	segmented structures	15
		3.5.2.2	Forces on	Bends, Intersections, and Anchor Points	5
		3.5.2.3	Anchor Po	bint Movement	15
	3.5.3	Earth-R	etaining Wa	Ils 3	15
		3.5.3.1	General R	equirements 3	65
		3.5.3.2	Elastic So	lution 3	15
		3.5.3.3	Active So	lution 3	\$5
	3.5.4	Above-(Ground Vert	ical Tanks 3	35
		3.5.4.1	General R	equirements 3	35
		3.5.4.2	Horizonta	I Impulsive Mode	36
			3.5.4.2.1	Effective weight of fluid—Impulsive mode	6
			3.5.4.2.2	Spectral acceleration—Impulsive mode	36
			3.5.4.2.3	Overturning moment at base of tank—Impulsive mode	37
			3.5.4.2.4	Hydrodynamic pressure on tank shell—Impulsive mode 3	37
		3.5.4.3	Horizonta	I Sloshing (Convective Mode)	37
			3.5.4.3.1	Effective weight of fluid—Sloshing mode	37
			3.5.4.3.2	Spectral acceleration—Sloshing mode	37
			3.5.4.3.3	Overturning moment at base of tank—Sloshing mode	37
			3.5.4.3.4	Hydrodynamic pressure on tank shell—Sloshing mode	37
			3.5.4.3.5	Fluid slosh height — Fundamental sloshing mode 3	37
		3544	Vertical F	hid Response Mode	18
		5.5.1.1	35441	Hydrodynamic pressure on tank shell—Vertical mode	18
		3545	Other Cor	righted manne pressure on tank shen vertical mode	12
		J.J. T .J	35451	Overturning moment and longitudinal compressive force	10
			3.5.4.5.1	Upon tension in tenk shall	00
			3.3.4.3.2	Freeboard requirements)0)0
			3.3.4.3.3 25151	Freedoard requirements)ð: 50
			3.3,4,3,4	Special provision for full tanks)Ø
			3.3.4.3.3	Attached piping	98 00
			3.5.4.5.6	Tank toundation	18
	3.5.5	Racewa	ys		8
		3.5.5.1	General R	equirements	;8
		3.5.5.2	Damping		18

3.5.6	Seismic	-Isolated Structures	39
	3.5.6.1	General Requirements	39
	3.5.6.2	Specification of Seismic Input Motion	39
	3.5.6.3	Modeling of Structures	39
	3.5.6.4	Response Spectrum Analysis	40
	3.5.6.5	Time History Analysis	40

Nonmandatory Appendix

A10	NONMANDATORY A DRENDLY A EVALUATIONS REVOND THE DESIGN RASIS	41
A1.0	NORMANDATORT AFFENDIA A. EVALUATIONS BETOND THE DESIGN DASIS	41
A1.1	INTRODUCTION	41
A2.1	HISTORY OF SPRA AND SMA	41
A3.1	PURPOSE AND OVERVIEW OF SEISMIC PROBABILISTIC RISK ASSESSMENT	42
A4.1	PURPOSE AND OVERVIEW OF SEISMIC MARGIN ASSESSMENT	
	METHODOLOGY	44
A5.1	COMPARISON OF SEISMIC EVALUATION METHODOLOGIES	47
A6.1	COMPARISON OF SPRA TO STANDARD	47
A7.1	COMPARISON OF SMA TO STANDARD	51
A8 .1	REFERENCES	53

Commentary

C2.0	SEISMIC	INPUT	55
C2.1	SEISMIC	GROUND MOTIONS	55
	C2.1.1 G	General Requirements	55
C2.2	RESPONS	SE SPECTRA	55
	C2.2.1 C	General Requirements	55
	C2.2.2 S	ite-Specific Horizontal Response Spectra	56
	C2.2.3 S	ite-Independent Horizontal Response Spectra	56
	C2.2.4 V	/ertical Response Spectra	56
C2.3	TIME HIS	STORIES	57
	C2.3.1 C	General Requirements	57
C2.4	POWER S	SPECTRAL DENSITY FUNCTIONS	59
C2.5	ADDITIO	NAL REQUIREMENTS FOR STRUCTURES SENSITIVE TO	
	LONG-PE	ERIOD MOTIONS	59
	C2.5.1 S	Spectral Shape	59
	C2.5.2 T	Time Histories	60
C3.0	ANALYS	IS	61
C3.1	MODELI	NG OF STRUCTURES	61
	C3.1.1 C	General Requirements	61
	(23.1.1.1 Models for Horizontal and Vertical Motions	61
	(C3.1.1.2 Multistep and One-Step Methods of Seismic Response Analysis	61
	Ċ	C3.1.1.3 Discretization Considerations	62
		C3.1.1.3.2 Selection of mesh size	62
		C3.1.1.3.3 Reduction of dynamic degrees of freedom	62
	C3.1.2 S	Structural Material Properties	62
	(C3 1.2.1 Concrete	62
	(73122 Damping	62
	C313 N	Modeling of Stiffness	62
	001110 1	73 1 3 1 Stiffness of Reinforced Concrete Elements	62
	C314	Modeling of Mass	63
		VIUGETTIN VI IVIANS.	~ ~ ~ ~ ~
	().1.4 F	C3 1.4.1 Discretization of Mass	63

	C3.1.5	Modeling of Damping	64
		C3.1.5.1 Damping Properties of Structures	64
		C3.1.5.1.1 Proportional damping (Rayleigh damping)	64
		C3.1.5.2 Composite Damping	64
		C31521 Substructures with known damping ratios	64
		C31522 Substructures with proportional damping	64
		C3 1 5 3 Composite Model Demping	64
		C3.1.5.4 Alternate Composite Madel Denging	04
	0216	C.1.3.4 Alternate Composite Modal Damping	04
	C3.1.0	Modeling of Hydrodynamic Effects	64
		C3.1.6.1 General Requirements.	64
		C3.1.6.2 Dynamic Analysis Formulation for Submerged Structures	64
		C3.1.6.3 Building Model Hydrodynamic Mass Effects	66
	C3.1.7	Dynamic Coupling Criteria	67
		C3.1.7.2 Single Point Attachment	67
		C3.1.7.3 Multipoint Attachment and Static Constraint	67
	C3.1.8	Requirements for Modeling Specific Structures	67
		C3.1.8.1.3 Requirements for lumped-mass stick models	67
		C3.1.8.3 Requirements for Shear-Wall Structures	68
		C3 1.8.4 Requirements for Plate and Shell Structures	68
C3 2	ANALY	VSIS OF STRUCTURES	70
05.2	C3 7 7	Time History Method	70
	03.2.2	C2 2 2 1 Cargaral Dequirements	70
			70
		C3.2.2.2.1 Modal superposition method	/0
		C3.2.2.2.2 Direct integration	71
		C3.2.2.3 Nonlinear Methods	71
	C3.2.3	Response Spectrum Method	72
		C3.2.3.1 Linear Methods	72
		C3.2.3.2 Nonlinear Methods	- 73
	C3.2.4	Complex Frequency Response Meethod	73
		C3.2.4.1 General Requirements	73
		C3.2.4.2 Response Time History	74
		C3.2.4.3 Methods to Compute Transfer Functions	74
	C3.2.5	Equivalent-Static Method	74
	00.210	C3251 General Requirements	74
		C3253 Other Simple Structures	75
	C326	Multiply Supported Systems	75
	CJ.2.0	C2 2 6 1 Caparal Dequirements	75
		C3.2.0.1 General Requirements.	15
		C3.2.6.2 Time History Method	15
		C3.2.6.3 Response Spectrum Methods	75
		C3.2.6.3.1 Envelope spectrum method	75
		C3.2.6.3.2 Multiple-spectrum method	76
		C3.2.6.3.3 Combination of inertial and seismic anchor	
		displacement effects	76
	C3.2.7	Combination of Modal and Component Responses	76
		C3.2.7.1 Response Spectrum Analysis	76
		C3.2.7.1.1 General modal combination rule	76
		C3.2.7.1.2 Combination of components	77
		C3 2 7 1 3 Multiple response parameters	77
C3 3	SOIL	STRUCTURE INTERACTION MODELING AND ANALYSIS	22
0.5.5	C2 2 1	General Dequirements	03 02
	C3.5.1	C2.2.1.1 Eined Deer Analysis	83
		Co. 2.1.2 Fixed-Base Analysis	84
		U3.3.1.2 Spatial Variations of Free-Field Motion	84

		C3.3.1.3 Three-Dimensional Effects	85
		C3.3.1.4 Nonlinear Behavior of Soil	85
		C3.3.1.5 Structure-to-Structure Interaction	85
		C3.3.1.6 Effect of Mat and Lateral Wall Flexibility	86
		C3.3.1.7 Uncertainties in SSI Analysis	86
		C3.3.1.8 Model of Structure.	86
		C3.3.1.9 Embedment Effects	87
		C3.3.1.10 Wave Incoherence	87
	C3.3.2	Subsurface Material Properties	87
	001012	C3 3 2 1 General Requirements	87
		C3 3 2 2 Shear Modulus	88
		C3 3 2 3 Damping Ratio	88
		C3.3.2.4 Poieson's Ratio	88
	C2 2 2	Diract Mathod	80
	C3.5.5	C2 3 2 1 Saismic Input for Model Boundaries	80
		C3.3.3.1 Seising input for Model Boundaries	02
		C3.3.3.5 Selection of Lateral Boundaries	- 90
		C3.3.5.4 Soli Element Size	90
	02.2.4	C3.3.5.5 Time Step and Frequency Increment	91
	C3.3.4	Impedance Method	91
		C3.3.4.1 Determination of Input Motion	91
		C3.3.4.2 Determination of Foundation Impedance Functions	92
		C3.3.4.2.1 Equivalent foundation dimensions	92
		C3.3.4.2.2 Uniform soil sites	92
		C3.3.4.2.3 Layered soil sites	92
		C3.3.4.2.4 Embedded foundations	92
C3.4	INPUT	FOR SUBSYSTEM SEISMIC ANALYSIS	95
	C3.4.1	General Requirements	95
		C3.4.1.1 Types of Seismic Input to Subsystem Analysis	95
		C3.4.1.2 Direction and Locations for In-Structure Response Spectra or Time	
		Histories	95
		C3.4.1.3 Subsystem Input Away from Reference Location	95
	C3.4.2	In-Structure Response Spectra	- 96
		C3.4.2.1.2 Direct spectra-to-spectra methods	96
		C3.4.2.2 Frequency Interval for Generation of In-Structure Response Spectra	96
		C3.4.2.3 Broadening and Lowering of Raw In-Structure Response Spectra	97
		C3.4.2.4 Interpolation of In-Structure Response Spectra for Intermediate	
		Damping	98
	C3.4.3	In-Structure Time History Motions	98
		C3.4.3.1 Methods for Generation of In-Structure Time History Motions	98
		C3 4 3.2 Equivalent Broadening and Lowering of In-Structure Time History	
		Motions	100
		C3 4 3.3 Time Interval and Data Precision Requirements for In-Structure Time	
		History Motions	101
	C3 4 4	Structural Model or Characteristics for Coupled Subsystem Analysis	101
	05.4.4	C2.4.4.1. Supporting Structure Model	101
C2 5	SDECL		101
C3.5	SPECH	Duried Diversity Conductor	103
	C3.3.2	Durieu ripes and Conduits	103
		US.S.2.1 Straight Sections Remote from Anchor Points, Sharp Bends, or	102
		Intersections	103
	C3.5.3	Earth-Ketaining Structures	104
		C3.5.3.1 General Requirements	104
		C3.5.3.2 Elastic Solution	104

	C3.5.3.3 Active Solution	105
C3.5.4	Above-Ground Vertical Tanks	105
	C3.5.4.2 Horizontal Impulsive Mode	105
	C3.5.4.2.1 Effective weight of fluid—Impulsive mode	105
	C3.5.4.2.2 Spectral acceleration—Impulsive mode	106
	C3.5.4.2.3 Overturning moment at base of tank—Impulsive mode	107
	C3.5.4.2.4 Hydrodynamic pressure on tank shell—Impulsive mode	107
	C3.5.4.3 Horizontal Sloshing (Conective) Mode	107
	C3.5.4.3.1 Effective weight of fluid—Sloshing mode	107
	C3.5.4.3.2 Spectral acceleration—Sloshing mode	107
	C3.5.4.3.3 Overturning moment at base of tank—Sloshing mode	107
	C3.5.4.3.4 Hydrodynamic pressure on tank shell—Sloshing mode	107
	C3.5.4.3.5 Fluid slosh height—Fundamental sloshing mode	108
	C3.5.4.4 Vertical Fluid Response Mode	108
	C3.5.4.4.1 Hydrodynamic pressure on tank shell—Vertical mode	108
	C3.5.4.5 Other Considerations	108
	C3.5.4.5.1 Overturning moment and longitudinal compressive force	108
C3.5.5	Raceways	108
	C3.5.5.1 General Requirements	108
	C3.5.5.2 Damping	109
C3.5.6	Seismic Isolated Structures	110
	C3.5.6.1 General Requirements	110
	C3.5.6.3 Modeling of Structures	111
	C3.5.6.4 Response Spectrum Analysis	111
	C3.5.6.5 Time History Analysis	111
Index		115

Seismic Analysis of Safety-Related Nuclear Structures

1.0 GENERAL

1.1 INTRODUCTION

1.1.1 Purpose

This standard provides minimum requirements and acceptable methods for the seismic analyses of safety-related structures of a nuclear facility. This standard provides a methodology for calculating seismic responses in structures and to derive input motions for use in the seismic qualification of electrical and mechanical systems and components.

The purpose of the analytical methods is to provide only small levels of conservatism to account for uncertainties. The intentional conservatism is contained in the following three areas:

- 1. For soil-structure interaction, three cases are analyzed using different soil modulus values and the results use the envelope of the three cases.
- 2. For in-structure response spectra, the peaks are broadened.
- 3. For structural damping, conservative values are specified.

As a result, the output from the analyses using these methods will be at a slightly greater probability of non-exceedance than that of the input. For example, the seismic responses will have about a 90% chance of not being exceeded for an input response spectrum specified at the 84th percentile non-exceedance level.

1.1.2 Scope

1.1.2.1 Types of Structures Covered by This Standard

This standard is intended for use in the seismic analysis of all safety-related structures of nuclear facilities including, but not limited to, above and below ground structures, buried piping, above ground vertical tanks and structures with seismic isolation systems. Analysis of caisson and pile-supported foundations, unlined tunnels, and floating structures are not covered by this standard. However, nothing in this standard should be considered to preclude the use of these structures and structural elements.

1.1.2.2 Foundation Material Stability

The analysis procedures provided herein assume that the structures analyzed are adequately supported by their foundation materials and that no soil or rock failure occurs that would modify or void the seismic analysis.

1.1.3 General Requirements

1.1.3.1 Use of Analysis Results

The seismic responses determined from the analyses prescribed herein are to be combined with responses due to dead load and other prescribed loads.

1.1.3.2 Alternative Methodologies

Techniques other than those specified in this standard, including experience gained from past earthquakes, special analyses, and testing, may be used in lieu of the requirements specified herein. However, such alternative methodologies shall be properly substantiated and shall conform to the intent of this standard as expressed in the preface.

1.2 DEFINITIONS

The following terms are defined for general use in this standard. Specialized definitions also appear in some individual sections.

Apparent wave propagation velocity: The apparent propagation velocity of seismic waves through the ground relative to a fixed local coordinate system on the object analyzed.

Competent soil: Any natural or improved soil that has a shear wave velocity, $V_s \ge 1,000$ fps (300 m/s).

Coupled: A descriptive term for mathematical models of structures and components that are interconnected and which influence the dynamic response of each other.

"Cut-off" frequency: The highest frequency which is adequately represented in the model for the soil structure interaction analysis procedure. It may be taken as twice the highest dominant frequency of the coupled soil-structure system for the direction under consideration, but not less than 10 Hz.

Design (or evaluation) ground acceleration: The value of the acceleration which corresponds to acceleration at zero period in the design groundresponse spectrum.

Design (or evaluation) response spectrum: A smooth response spectrum of the free-field input mo-