

ASCE STANDARD

American Society of Civil Engineers

Standard Practice for Direct Design of Buried Precast Concrete Box Sections

ASCE 26-97

American Society of Civil Engineers

Standard Practice for Direct Design of Buried Precast Concrete Box Sections

This document uses both Système International (SI) units and customary units.

Published by the American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191-4400

ABSTRACT

This publication, Standard Practice for Direct Design of Buried Precast Concrete Box Sections, discusses the direct design of buried one-cell precast reinforced concrete box sections installed in accordance with Part III of this Practice intended for the conveyance of sewage, industrial wastes, storm water, and drainage. The publication also discusses these box sections as they are intended to serve as tunnels. Part II of this Practice presents the method of design for buried one-cell precast reinforced concrete box sections. Part III of this Practice presents construction requirements for precast reinforced concrete box sections designed in accordance with this Practice. The commentary provides supporting background data.

Library of Congress Cataloging-in-Publication Data

Standard practice for direct design of buried precast concrete box sections / American Society of Civil Engineers.

p. cm.— (ASCE Standard) "ASCE 26-97."

Includes bibliographical references and index.

ISBN 0-7844-0472-0

1. Reinforced concrete construction. 2. Boxes-Design. 3. Precast concrete. 4. Soil-structure interaction. I. American Society of Civil Engineers.

TA683.2. S72 2000 624.1'83414-dc21

00-038955

Photocopies. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clear-ance Center (CCC) Transactional Reporting Service, pro-vided that the base fee of \$8.00 per article plus \$.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0472-0/ 00/\$8.00 + \$.50 per page. Requests for special permission or bulk copying should be addressed to Permissions & Copy-right Dept., ASCE.

Copyright © 2000 by the American Society of Civil Engineers. All Rights Reserved. Library of Congress Catalog Card No: 00-038955 ISBN 0-7844-0472-0 Manufactured in the United States of America.

STANDARDS

In April 1980, the Board of Direction approved ASCE Rules for Standards Committees to govern the writing and maintenance of standards developed by the Society. All such standards are developed by a consensus standards process managed by the Management Group F (MGF), Codes and Standards. The consensus process includes balloting by the balanced standards committee made up of Society members and nonmembers, balloting by the membership of ASCE as a whole, and balloting by the public. All standards are updated or reaffirmed by the same process at intervals not exceeding 5 years.

The following Standards have been issued.

- ANSI/ASCE 1-82 N-725 Guideline for Design and Analysis of Nuclear Safety Related Earth Structures
- ANSI/ASCE 2-91 Measurement of Oxygen Transfer in Clean Water
- ANSI/ASCE 3-91 Standard for the Structural Design of Composite Slabs and ANSI/ASCE 9-91 Standard Practice for the Construction and Inspection of Composite Slabs
- ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures
- Building Code Requirements for Masonry Structures (ACI 530-99/ASCE 5-99/TMS 402-99) and Specifications for Masonry Structures (ACI 530.1-99/ASCE 6-99/TMS 602-99)
- ASCE 7-98 Minimum Design Loads for Buildings and Other Structures
- ANSI/ASCE 8-90 Standard Specification for the Design of Cold-Formed Stainless Steel Structural Members
- ANSI/ASCE 9-91 listed with ASCE 3-91
- ASCE 10-97 Design of Latticed Steel Transmission Structures
- SEI/ASCE 11-99 Guideline for Structural Condition Assessment of Existing Buildings

- ANSI/ASCE 12-91 Guideline for the Design of Urban Subsurface Drainage
- ASCE 13-93 Standard Guidelines for Installation of Urban Subsurface Drainage
- ASCE 14-93 Standard Guidelines for Operation and Maintenance of Urban Subsurface Drainage
- ASCE 15-98 Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations (SIDD)
- ASCE 16-95 Standard for Load and Resistance Factor Design (LRFD) of Engineered Wood Construction
- ASCE 17-96 Air-Supported Structures
- ASCE 18-96 Standard Guidelines for In-Process Oxygen Transfer Testing
- ASCE 19-96 Structural Applications of Steel Cables for Buildings
- ASCE 20-96 Standard Guidelines for the Design and Installation of Pile Foundations
- ASCE 21-96 Automated People Mover Standards— Part 1
- ASCE 21-98 Automated People Mover Standards— Part 2
- SEI/ASCE 23-97 Specification for Structural Steel Beams with Web Openings
- SEI/ASCE 24-98 Flood Resistant Design and Construction
- ASCE 25-97 Earthquake-Actuated Automatic Gas Shut-Off Devices
- ASCE 26-97 Standard Practice for Direct Design of Buried Precast Concrete Box Sections
- ASCE 27-00 Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction
- ASCE 28-00 Standard Practice for Direct Design of Precast Concrete Box Sections for Jacking in Trenchless Construction

FOREWORD

The material presented in this publication has been prepared in accordance with recognized engineering principles. This Standard and Commentary should not be used without first securing competent advice with respect to their suitability for any given application. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Society of Civil Engineers, or of any other person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability from such use.

ACKNOWLEDGMENTS

The American Society of Civil Engineers (ASCE) acknowledges the work of the Direct Design of Buried Concrete Pipe Standards Committee of the Management Group F, Codes and Standards. This group comprises individuals from many backgrounds including: consulting engineering, research, construction industry, education, government, design and private practice.

The Standard was prepared through the consensus standards process by balloting in compliance with procedures of ASCE's Management Group F, Codes and Standards. Those individuals who serve on the Standards Committee are:

Richard P. Baldewin Josiah W. Beakley Mike Bealey Matthew J. Binder Joseph A. Bohinsky Thomas K. Breitfuss Leo Brooks Dennis L. Bunke Eric A. Carleton Oliver Delery, Jr. Jeffrey I. Enyart R. Hartley Field Fouad H. Fouad Frank J. Heger James J. Hill Iraj I. Kaspar

Kenneth K. Kienow Leonard L. Klein John M. Kurdziel John O. Lane Kelley Lloyd J. Wayne MacLean Michael C. McVay Kenneth F. Miller Wallace J. Munden Michael Murphy Masanori Nagami, Chair Charles R. Nelson John L. Niklaus David Nishimura James A. Nystrom Gerald R. Price

Mark W. Schumacher Ernest T. Selig Daniel N. Short Balaram K. Singh Robert F. Spiekerman Lee E. Stockton, *Vice Chair* Richard A. Swenson Charles M. Taylor Albert T. Tung Adrianus VanKampen, *Secretary* Jack C. Williams James L. Withiam Shig Yonaminea Joseph P. Zicaro

CONTENTS

PART I. GENERAL

1.0	Scope	1
2.0	Applicable Documents	1
	2.1 ASTM	1
	2.2 AASHTO	2
3.0	Definitions	2
4.0	Notations	2
5.0	Summary of Practice	4

PART II. DIRECT DESIGN METHOD

60	General			5
0.0	62	Design 1	Submittals	5
7.0	General	Design I Design I	Requirements	5
7.0	General	711	Load Factors	5
		7.1.2	Strength Reduction (Phi) Factors	5
		7.1.2	Crack Control Factor	5
8.0	Design	Paquiran	opents by Owner	5
0.0	Design	Requiren	Manufacturar	5
9.0	Mataria	Jo		5
10.0		Comorot	•	6
	10.1	Concret	ē	0
11.0	10.2	Keintor	Li time a d Ota stard A selecte	0
11.0	Loads,	Load Cor	ndinations, and Structural Analysis	0
	11.1	Loads		6
		11.1.1	Dead Loads	6
		11.1.2	Live Loads	7
	11.2	Load A	oplications	7
		11.2.3	Load Case 1: Box Section Weight	7
		11.2.4	Load Case 2: Vertical Soil Load	7
		11.2.5	Load Cases 3 and 4: Lateral Soil Loads	9
		11.2.6	Load Case 5: Internal Fluid Weight	9
		11.2.7	Load Case 6: Uniform Highway, Railroad, or Aircraft Load	9
		11.2.8	Load Case 7: Non-Uniform Highway, Railroad, or Aircraft Load	9
		11.2.9	Load Case 8: Approaching Highway, Railroad, or Aircraft Load	9
		11.2.10	Load Case 9: Uniform Vertical Surcharge Load	9
		11.2.11	Load Case 10: Linearly Varying Lateral Surcharge Load	9
		11.2.12	Intermittent Internal Fluid Pressure Load	9
		11.2.13	Highway Load Distribution through Earth Cover	9
		11.2.14	Railroad Load Distribution through Ballast and Earth	13
		11.2.15	Aircraft Load Distribution through Pavement and Earth	13
	11.3	Structur	al Analysis	13
		11.3.1	Stress Resultants for Design	13
		11.3.2	Assumptions for Analysis	13
		11.3.3	Combined Effects of Stress Resultants	13
12.0	Reinfor	cement		13
	12.1 Reinforcement Details			
	12.2	Reinfor	cement Design	13
		12.2.2	Minimum Reinforcement.	16
		12.2.3	Maximum Flexural Reinforcement Limited by Concrete Compression	16
		12.2.4	Crack Control	16
		1 4.4.1	Cluck Control	ro

	12.2.5	Shear Strength (Diagonal Tension)	17
	12.2.6	Stirrups	18
	12.2.7	Welds, Splices, and Development of Reinforcement	18
12.3	Distribution Reinforcement		
	12.3.1	Design of Reinforcement	18
	12.3.2	Minimum Area of Distribution Reinforcement	18
12.4	Fatigue	Limit	19

PART III. CONSTRUCTION OF PRECAST CONCRETE BOX SECTION SYSTEMS

13.0	General	20
14.0	Working Drawings and Marking	20
15.0	Safety	20
16.0	Excavation	20
17.0	Foundation	21
18.0	Leveling Course	21
19.0	Box Section Placement and Joining	21
20.0	Sidefill	22
21.0	Overfill	22
22.0	Sheathing Removal and Trench Shield Advancement	22
23.0	Precast Concrete Appurtenances	22
24.0	Minimum Cover for Construction Loads	22

APPENDIX A: SI UNITS FOR NOTATION AND EQUATIONS

A1.0	Scope		23
A2.0	.0 Standard Practice—SI Conversions		
4.0	Notations		
12.0	Reinforcement		
	12.1	Reinforcement Details	24
	12.2	Reinforcement Design	25
	12.3	Distribution Reinforcement	26
	12.4	Fatigue Limit	27

COMMENTARY

PART I	. GENERAL	
C1.0	Scope	28
C3.0	Definitions	28
C4.0	Notations	28
PART J	I. DESIGN	
C6.0	General	28
C7.0	General Design Requirements	28
C11.0	Loads	29
C12.0	Reinforcement	30
PART J	III. CONSTRUCTION OF PRECAST CONCRETE BOX SECTION SYSTEMS	
C18.0	Leveling Course	31
C20.0	Sidefill	31
C21.0	Overfill	31
INDEX	,	33

16

LIST OF FIGURES

12-1

3.4-1	Box section/installation terminology	3
11-1	Load cases	8
11-2	Coefficient C_d —load coefficient for trench installations	10
11-3	AASHTO live loads	11
11-4	Earth pressure distribution area at depth of earth cover	11
11-5	AASHTO tire contact area for HS20 dual wheels	12
11-6	Additional distribution of effective earth pressure due to longitudinal beam stiffness	12
12-1	Typical box section reinforcement layout	14
12-2	Reinforcement placement at ends of box when As7 and As8 cages are used	15
12-3	Reinforcement placement at ends of box when As7 and As8 cages are not used	15
12-4	Typical box section joint (top slab shown)	16
LIST	OF TABLES	
11-1	AASHTO impact factors	7
11-2	Load cases	7

Crack control coefficients.....