American Society of Civil Engineers

Design Loads on Structures During Construction

This document uses both Système International (SI) units and customary units.
ABSTRACT

The purpose of this standard is to provide minimum design load requirements during construction for buildings and other structures. This standard addresses partially completed structures, and temporary structures used during construction. The loads specified herein are suitable for use either with strength design (such as USD and LRFD) or with allowable stress design (ASD) criteria. The loads are equally applicable to all conventional construction materials.

Library of Congress Cataloging-in-Publication Data

Design loads on structures during construction / Structural Engineering Institute of the American Society of Civil Engineers. p. cm.
Includes bibliographical references and index.
ISBN 0-7844-0618-9

TH420 .D47 2002
624.1’76—dc21 2002022557

ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies: Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $8.00 per article plus $.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0618-9/02/ $8.00 + $.50 per page. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Dept., ASCE.

Copyright © 2002 by the American Society of Civil Engineers. All Rights Reserved.

Library of Congress Catalog Card No: 2002022557
ISBN 0-7844-0618-9

Manufactured in the United States of America.
In April 1980, the Board of Direction approved ASCE Rules for Standards Committees to govern the writing and maintenance of standards developed by the Society. All such standards are developed by a consensus standards process managed by the Management Group F (MGF), Codes and Standards. The consensus process includes balloting by the balanced standards committee made up of Society members and nonmembers, balloting by the membership of ASCE as a whole, and balloting by the public. All standards are updated or reaffirmed by the same process at intervals not exceeding 5 years.

The following Standards have been issued:

- ANSI/ASCE 1-82 N-725 Guideline for Design and Analysis of Nuclear Safety Related Earth Structures
- ANSI/ASCE 2-91 Measurement of Oxygen Transfer in Clean Water
- ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures
- Building Code Requirements for Masonry Structures (ACI 530-99/ASCE 5-99/TMS 402-99) and Specifications for Masonry Structures (ACI 530.1-99/ASCE 6-99/TMS 602-99)
- ASCE 7-98 Minimum Design Loads for Buildings and Other Structures
- ANSI/ASCE 8-90 Standard Specification for the Design of Cold-Formed Stainless Steel Structural Members
- ANSI/ASCE 9-91 listed with ASCE 3-91
- ASCE 10-97 Design of Latticed Steel Transmission Structures
- SEI/ASCE 11-99 Guideline for Structural Condition Assessment of Existing Buildings
- ASCE 13-93 Standard Guidelines for Installation of Urban Subsurface Drainage
- ASCE 14-93 Standard Guidelines for Operation and Maintenance of Urban Subsurface Drainage
- ASCE 15-98 Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations (SIDD)
- ASCE 16-95 Standard for Load and Resistance Factor Design (LRFD) of Engineered Wood Construction
- ASCE 17-96 Air-Supported Structures
- ASCE 18-96 Standard Guidelines for In-Process Oxygen Transfer Testing
- ASCE 19-96 Structural Applications of Steel Cables for Buildings
- ASCE 20-96 Standard Guidelines for the Design and Installation of Pile Foundations
- ASCE 21-96 Automated People Mover Standards—Part 1
- ASCE 21-98 Automated People Mover Standards—Part 2
- ASCE 21-00 Automated People Mover Standards—Part 3
- SEI/ASCE 23-97 Specification for Structural Steel Beams with Web Openings
- SEI/ASCE 24-98 Flood Resistant Design and Construction
- ASCE 25-97 Earthquake-Actuated Automatic Gas Shut-Off Devices
- ASCE 26-97 Standard Practice for Design of Buried Precast Concrete Box Sections
- ASCE 27-00 Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction
- ASCE 28-00 Standard Practice for Direct Design of Precast Concrete Box Sections for Jacking in Trenchless Construction
- EWRI/ASCE 33-01 Comprehensive Transboundary International Water Quality Management Agreement
- EWRI/ASCE 34-01 Standard Guidelines for Artificial Recharge of Ground Water
- EWRI/ASCE 35-01 Guidelines for Quality Assurance of Installed Fine-Pore Aeration Equipment
- CI/ASCE 36-01 Standard Construction Guidelines for Microtunneling
- SEI/ASCE 37-02 Design Loads on Structures During Construction
This page intentionally left blank
The material presented in this publication has been prepared in accordance with recognized engineering principles. This Standard and Commentary should not be used without first securing competent advice with respect to their suitability for any given application. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Society of Civil Engineers, or of any person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability from such use.

Earlier drafts of the proposed standard were reviewed and balloted several times by the full Standards Committee. The votes and comments returned by the members were reviewed, and their proposed resolutions developed by the appropriate subcommittees. The resulting approved changes in the text are included in this volume.

Some of the provisions were adopted from other codes, standards, regulations and specifications; some reflect prevailing industry design and construction practices; some grew out of the experiences, practices and opinions of members of the Committee; and some others were developed through research conducted specifically for this Standard by members of the Committee.

Preparation of a standard for Design Loads on Structures During Construction and its outline were proposed to ASCE by Robert T. Ratay in early 1987. Work on the proposed Standard was approved by ASCE’s Board of Directors in October 1987. A meeting of twenty-five construction industry officials was convened in May 1988 to outline the general direction of the proposed Standard. Seven key ASCE participants met in September 1988 to begin the organization of the Standards Committee, and issue a Call for Members. The response by members and non-members of ASCE was overwhelming. The Committee, through its subcommittees, has been working on the development of this proposed Standard since the fall of 1988. Prior to this volume, drafts of the proposed standard had been issued for committee balloting in 1996, 1997, 1998, early 1999, late 1999; for public comments in October 2000; and for a final committee balloting in 2001.
This page intentionally left blank
ACKNOWLEDGMENTS

This Standard was developed over a period of several years by the Design Loads on Structures During Construction Standard Committee of the Codes and Standards Activities Division (CSAD) of the Structural Engineering Institute (SEI), and of the Codes and Standards Activities Committee (CSAC) of the American Society of Civil Engineers (ASCE). This final draft was prepared by six subcommittees of the Design Loads on Structures During Construction Standard Committee under the leadership of the following individuals:

Robert T. Ratay, Chairman
Rubin M. Zallen, Chapter 1.0, Purpose and Scope
John F. Duntemann, Chapter 2.0, Loads and Load Combinations
Cosmea E. Crawford, Chapter 3.0, Dead and Live Loads
John S. Deerkoski, Chapter 4.0, Construction Loads
Peter Edinger, Chapter 5.0, Lateral Earth Pressures
Donald Dusenberry, Chapter 6.0, Environmental Loads

The particularly active long-term participation and valuable contribution of the following members, in addition to the six subcommittee chairs, is acknowledged: Charles G. Culver, David Rosowsky, James R. Harris, Alan Fisher, Gilliam S. Harris, Daniel M. McGee, and Cris Subrizi.

ASCE acknowledges the work of the Design Loads on Structures During Construction Standard Committee of the CSAD of SEI, and of the CSAC of ASCE. The Standard Committee comprises individuals from many backgrounds including design, analysis, research, consulting engineering, construction, education, government, and private practice.

Present members of the Standard Committee are:

Jimmy C. Allen
Mohammad Ayub
Cosmea E. Crawford
Charles G. Culver
John S. Deerkoski
John F. Duntemann
Donald Dusenberry
Sheila R. Duwadi
Peter H. Edinger
Alan Fisher
Satyendra K. Ghosh
David H. Glabe
Norman J. Glover
Ram A. Goel
Allan H. Gold
Dennis W. Graber
Gilliam S. Harris
James R. Harris
Gerd W. Hartung
Philip T. Hodge

Nestor R. Iwankiw
David W. Johnston
Roger S. Johnston
Saeed Karshenas
Marke E. Killion
Enno Koehn
Robert C. Krueger
Harry B. Lancelot
Jim E. Lapping
Hugh C. MacDonald
Rusk Masih
George M. Matsumura
Bobby G. McCullough
Daniel M. McGee
Robert R. McCluer
Robert G. McCracken
Thomas Meany Jr.
Jack L. Mickle
David A. Niday
Joe N. Nunnery
Dai H. Oh

Dale C. Perry
Forrest J. Pollard
Max L. Porter
Robert T. Ratay, Chairman
Ramon M. Riba
David V. Rosowsky
Herbert S. Saffir
John M. Sheehan
Christopher H. Stone
J.M. Stout
Cris Subrizi, Secretary
Bruce A. Suprenant
Harry B. Thomas
Raymond H.R. Tide
Vincent Tirolo Jr.
James J. Vogt
Kenneth F. Weber
Michael A. West
Terry K. Wright
Rubin M. Zallen
CONTENTS

1.0 General ... 1
 1.1 Purpose ... 1
 1.2 Scope ... 1
 1.3 Basic Requirements .. 1
 1.3.1 Safety ... 1
 1.3.2 Structural Integrity ... 1
 1.3.3 Serviceability ... 2
 1.3.4 Types of Loads .. 2
 1.3.5 Construction Methods 2
 1.3.6 Analysis ... 3

2.0 Loads and Load Combinations 4
 2.1 Loads Specified .. 4
 2.2 Load Combinations and Load Factors for Strength Design 4
 2.2.1 Additive Combinations 5
 2.2.2 Load Factors ... 5
 2.2.3 Basic Combinations ... 6
 2.2.4 Counteracting Combinations 7

2.3 Allowable Stress Design .. 7
 2.3.1 Additive Combinations 8
 2.3.2 Load Reduction ... 8
 2.3.3 Overturning and Sliding 8
 2.3.4 Counteracting Loads 9

2.4 Bridges .. 9

3.0 Dead and Live Loads .. 10
 3.1 Dead Loads .. 10
 3.2 Live Loads .. 10

4.0 Construction Loads .. 11
 4.1 General Requirements ... 11
 4.1.1 Definitions .. 11
 4.2 Material Loads ... 11
 4.2.1 Concrete Load ... 12
 4.2.2 Materials Contained in Equipment 13
 4.3 Personnel and Equipment Load, \(C_P \) 13
 4.3.1 General ... 13
 4.3.2 Uniformly Distributed Loads 13
 4.3.3 Concentrated Loads 13
 4.3.4 Impact Loads .. 14
 4.4 Horizontal Construction Load, \(C_H \) 15
 4.5 Erection and Fitting Forces, \(C_F \) 15
 4.6 Equipment Reactions, \(C_R \) 16
 4.6.1 General ... 16
 4.6.2 Rated Equipment ... 16
 4.6.3 Nonrated Equipment 16
 4.6.4 Impact ... 17
 4.7 Form Pressure ... 17
 4.7.1 Form Pressure .. 17
 4.7.2 Slipform Pressure 18
 4.7.3 Shoring Loads ... 18

1.3.5 Construction Methods .. 2
1.3.3 Serviceability ... 2
1.3.4 Types of Loads .. 2
1.3.5 Construction Methods 2
1.3.6 Analysis ... 3

2.2.4 Counteracting Combinations 7
2.3.4 Counteracting Loads 9
2.4 Bridges 9
3.0 Dead and Live Loads 10
3.1 Dead Loads 10
3.2 Live Loads 10
4.0 Construction Loads 11
4.1 General Requirements 11
4.1.1 Definitions 11
4.2 Material Loads 11
4.2.1 Concrete Load 12
4.2.2 Materials Contained in Equipment 13
4.3 Personnel and Equipment Load, \(C_P \) 13
4.3.1 General 13
4.3.2 Uniformly Distributed Loads 13
4.3.3 Concentrated Loads 13
4.3.4 Impact Loads 14
4.4 Horizontal Construction Load, \(C_H \) 15
4.5 Erection and Fitting Forces, \(C_F \) 15
4.6 Equipment Reactions, \(C_R \) 16
4.6.1 General 16
4.6.2 Rated Equipment 16
4.6.3 Nonrated Equipment 16
4.6.4 Impact 17
4.7 Form Pressure 17
4.7.1 Form Pressure 17
4.7.2 Slipform Pressure 18
4.7.3 Shoring Loads 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Application of Loads</td>
<td>19</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Combined Loads</td>
<td>19</td>
</tr>
<tr>
<td>4.8.1.1</td>
<td>Working Surfaces</td>
<td>19</td>
</tr>
<tr>
<td>4.8.1.2</td>
<td>Specification of Temporary Structures</td>
<td>20</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Partial Loading</td>
<td>20</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Reduction in Construction Loads</td>
<td>20</td>
</tr>
<tr>
<td>4.8.3.1</td>
<td>Material Loads</td>
<td>20</td>
</tr>
<tr>
<td>4.8.3.2</td>
<td>Personnel and Equipment Loads</td>
<td>20</td>
</tr>
<tr>
<td>4.8.3.3</td>
<td>Personnel and Equipment Loads on Sloping Roofs</td>
<td>21</td>
</tr>
<tr>
<td>4.8.4</td>
<td>Restriction of Loads</td>
<td>21</td>
</tr>
<tr>
<td>5.0</td>
<td>Lateral Earth Pressure</td>
<td>24</td>
</tr>
<tr>
<td>5.1</td>
<td>Definition</td>
<td>24</td>
</tr>
<tr>
<td>5.2</td>
<td>Determination of Lateral Earth Pressure</td>
<td>24</td>
</tr>
<tr>
<td>6.0</td>
<td>Environmental Loads</td>
<td>25</td>
</tr>
<tr>
<td>6.1</td>
<td>Importance Factor</td>
<td>25</td>
</tr>
<tr>
<td>6.2</td>
<td>Wind</td>
<td>25</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Design Velocity</td>
<td>25</td>
</tr>
<tr>
<td>6.2.1.1</td>
<td>Construction Period</td>
<td>26</td>
</tr>
<tr>
<td>6.2.1.2</td>
<td>Continuous Work Period</td>
<td>26</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Frameworks Without Cladding</td>
<td>27</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Accelerated Wind Regions</td>
<td>27</td>
</tr>
<tr>
<td>6.3</td>
<td>Thermal Loads</td>
<td>28</td>
</tr>
<tr>
<td>6.4</td>
<td>Snow Loads</td>
<td>29</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Ground Snow Loads</td>
<td>29</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Thermal, Exposure, and Slope Factors</td>
<td>30</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Drainage</td>
<td>30</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Loads in Excess of the Design Value</td>
<td>30</td>
</tr>
<tr>
<td>6.5</td>
<td>Earthquake</td>
<td>30</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Applicability</td>
<td>30</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Use of ASCE 7</td>
<td>31</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Other Standards for Earthquake-Resistant Design</td>
<td>31</td>
</tr>
<tr>
<td>6.6</td>
<td>Rain</td>
<td>32</td>
</tr>
<tr>
<td>6.7</td>
<td>Ice</td>
<td>32</td>
</tr>
</tbody>
</table>

Index 35
1.0 GENERAL

1.1 Purpose
The purpose of this standard is to provide minimum design load requirements during construction for buildings and other structures.

1.2 Scope
This standard addresses partially completed structures, as well as temporary structures used during construction. The loads specified herein are suitable for use either with strength design (such as USD and LRFD) or with allowable stress design (ASD) criteria. The loads are equally applicable to all conventional construction materials.

1.3 Basic Requirements
1.3.1 Safety
The design loads shall provide for a level of safety of partially completed structures, as well as temporary structures used in construction, that is comparable to the level of safety of completed structures.

1.3.2 Structural Integrity
Partially completed structures and temporary structures shall have sufficient structural integrity, in all stages of construction, to remain stable and resist the loads specified herein. Stability of the incomplete structure and the possibility of progressive collapse shall be considered.

C1.0 GENERAL

C1.1 Purpose
The construction loads, load combinations, and load factors contained herein account for the often short duration of loading and for the variability of temporary loads. Many elements of the completed structure that are relied upon implicitly to provide strength, stiffness, stability, or continuity may not be present at certain times during construction.

The requirements in this standard complement those in ASCE 7-95.

This standard does not specify who the responsible party is for the design of temporary structures or temporary supports or for the temporary use of incomplete structures.

C1.2 Scope
This standard is intended for use by engineers knowledgeable in the performance of structures.

The requirements contained herein are not intended to adversely affect the selection of a particular construction material or type of construction.

C1.3.1 Safety
This standard is not intended to account for loads caused by gross negligence or error.

C1.3.2 Structural Integrity
Structural integrity shall be provided by sequencing the construction in order to avoid creating vulnerable partially completed portions of the structure; by completing the system to support lateral loads as the dependent portion of the structure is erected or by providing suitable temporary lateral bracing; by avoiding conditions that result in loads that exceed the capacity of structural elements; and by promptly completing connections for all installed elements.

During erection of a structure, the structural system that will provide stability and structural integrity for the finished structure generally is not complete. In this interim state, elements of the structural system that are essential to the overall performance of the structure may not be in place or may be only partially secured.