Second Edition

ASCE Manuals and Reports on Engineering Practice No. 106

Horizontal Auger Boring Projects

Horizontal Auger Boring Task Force

Edited by Alan Atalah, Ph.D., P.E. Lameck Onsarigo, Ph.D.

UTILITY ENGINEERING & SURVEYING INSTITUTE

Horizontal Auger Boring Projects

Second Edition

Prepared by the Horizontal Auger Boring Task Force of the Trenchless Installation of Pipelines Committee of the Utility Engineering and Surveying Institute of the American Society of Civil Engineers

> Edited by Alan Atalah, Ph.D., P.E. Lameck Onsarigo, Ph.D.

Published by the American Society of Civil Engineers

Library of Congress Cataloging-in-Publication Data

Names: American Society of Civil Engineers. Horizontal Auger Boring Task Force, author. | Atalah, Alan, editor.

- Title: Horizontal auger boring projects / prepared by the Horizontal Auger Boring Task Force of the Trenchless Installation of Pipelines Committee of the Utilities Engineering and Surveying Institute of the American Society of Civil Engineers, Task Committee Chair, Alan Atalah, Ph.D., P.E.
- Description: Second edition. | Reston, Virginia : ASCE, UESI, [2017] | Includes bibliographical references and index. | Description based on print version record and CIP data provided by publisher; resource not viewed.
- Identifiers: LCCN 2016044510 (print) | LCCN 2016042035 (ebook) | ISBN 9780784480236 (pdf) | ISBN 9780784414583 (soft cover : alk. paper) | ISBN 9780784480236 (PDF)
- Subjects: LCSH: Pipelines-Design and construction. | Trenchless construction. | Boring.
- Classification: LCC TA660.P55 (print) | LCC TA660.P55 M53 2017 (ebook) | DDC 621.8/ 672-dc23

LC record available at https://lccn.loc.gov/2016044510

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/bookstore | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in the ASCE Library (http://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at https://doi.org/10.1061/9780784414583.

Copyright © 2017 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-1458-3 (print) ISBN 978-0-7844-8023-6 (PDF)

Manufactured in the United States of America.

23 22 21 20 19 18 17 1 2 3 4 5

MANUALS AND REPORTS ON ENGINEERING PRACTICE

(As developed by the ASCE Technical Procedures Committee, July 1930, and revised March 1935, February 1962, and April 1982)

A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his or her everyday work, rather than findings that may be useful only occasionally or rarely. It is not in any sense a "standard," however; nor is it so elementary or so conclusive as to provide a "rule of thumb" for nonengineers.

Furthermore, material in this series, in distinction from a paper (which expresses only one person's observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable the committee is under the direction of one or more of the Technical Divisions and Councils, and the product evolved has been subjected to review by the Executive Committee of the Division or Council. As a step in the process of this review, proposed manuscripts are often brought before the members of the Technical Divisions and Councils for comment, which may serve as the basis for improvement. When published, each work shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review, so that its merit may be definitely understood.

In February 1962 (and revised in April 1982), the Board of Direction voted to establish a series titled "Manuals and Reports on Engineering Practice," to include the Manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such Manual or Report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past Manuals. Numbering would be consecutive and would be a continuation of present Manual numbers. In some cases of joint committee reports, bypassing of Journal publications may be authorized.

A list of available Manuals of Practice can be found at http://www.asce.org/ bookstore.

CONTENTS

PR	EFAC	Е	ix
AC	CKNO	WLEDGMENTS	xi
AB	BREV	IATIONS, ACRONYMS, AND INITIALISMS	xv
1.	GEN	ERAL	1
	1.1	Scope of This MOP	
	1.2	Why Trenchless Technology?	
	1.3	Horizontal Auger Boring	5
	1.4	Overview of Alternative Trenchless Technologies	13
		References	26
2.	HOR	IZONTAL AUGER BORING SYSTEM	29
	2.1	System Components	29
	2.2	Recent Innovations in HAB	36
	2.3	Variations of HAB	38
	2.4	Considerations and Limitations of HAB	48
		References	48
3.	PLA	NNING PHASE	51
	3.1	Feasibility Study	53
	3.2	Predesign Survey	53
	3.3	Cost Considerations	57
	3.4	Environmental Considerations and Social Benefits	58
	3.5	Regulatory Requirements	59
	3.6	Show Stoppers and Premium Cost Conditions	60
		References	61

CONTENTS

4.	GEO	FECHNICAL INVESTIGATIONS	63
	4.1	Importance of Geotechnical Investigation	
	4.2	Risk Management and Geotechnical Investigation	
	4.3	Geotechnical Investigation Program	
	4.4	Geotechnical Properties	
	4.5	Geotechnical Reporting Requirements	
		References	
5.	DESI	GN AND PRECONSTRUCTION PHASE	91
	5.1	Feasibility and Risk Assessment	
	5.2	Auger Boring Design	
	5.3	Pit or Shaft Considerations	
	5.4	Groundwater Considerations	
	5.5	Site-Specific Design for Risk Management	
	5.6	Contract Documents	
	5.7	Contractor Prequalification	
		References	
6.	CON	STRUCTION CONSIDERATIONS	111
	6.1	Preconstruction Activities	
	6.2	Jobsite Layout Plan	
	6.3	Underground Utilities Investigation	
	6.4	Construction Means and Methods	
	6.5	Jacking and Receiving Pits	
	6.6	Shoring Jacking and Receiving Shafts	
	6.7	Casing Pipe	
	6.8	Lubrication Fluids	
	6.9	Carrier Pipe Installation and Grouting	
		of the Annular Space	
	6.10	Steering Systems (Tracking, Locating,	
		and Guidance Considerations)	
	6.11	Inspection and Monitoring	
	6.12	As-Built Drawings and Documentation	
	6.13	Risk Assessment Plan	
	6.14	DSCs/Obstructions	
	6.15	Suggestions for Dealing with Various Ground	
		Conditions	
	6.16	Potential Problems and Possible Solutions	
	6.17	Surface Movement-Monitoring Program	
	6.18	Types of Payment	
	6.19	Costs for HAB	
	6.20	Safety Issues	
	6.21	Control of Construction Nuisances	
		References	

CONTENTS

7.	CONCLUSIONS	149
GLC	DSSARY	151
IND	DEX	157

PREFACE

There are several different trenchless technologies. Horizontal auger boring (HAB) is one of these and is the focus of this manual of practice (MOP). The first ASCE MOP for auger boring projects was developed in 2004 by the Auger Boring Task Force of the ASCE Committee on Trenchless Installation of Pipelines (TIPS). This MOP was the first in a series of MOPs that have promoted best practices and developed a knowledge base for auger boring projects. Since then, there have been advancements in HAB technology. Therefore, the Auger Boring Task Force established by TIPS has issued this updated and comprehensive edition.

This MOP will assist engineers, contractors, and owners involved in new pipe installation projects that use the HAB method to design and carry out projects effectively and safely, in conformance with project requirements and site conditions. The objective of this manual is to present a clear understanding of the method, its capabilities, and limitations; outline important design and construction considerations; and identify potential problems along with prevention and mitigation measures. The task committee understands that various trenchless technologies may be combined to form hybrid trenchless methods. However, this MOP will focus on the mechanics of the basic HAB means and methods with currently available equipment. These guidelines are based on information compiled from manufacturers' literature, field experience, technical papers, and other related information, and from comments and reviews made by the Blue Ribbon Committee.

The task committee would like to thank all the task committee members and reviewers for their support, time, and effort.

ACKNOWLEDGMENTS

The Horizontal Auger Boring Task
Force
Disalines (TIDC) Compatibles
Pipelines (TIPS) Committee
of the Utility Engineering and
Surveying Institute of the American
Society of Civil Engineers
Alan Atalah
Bowling Green State University,
Bowling Green, Ohio
Lameck Onsarigo
Kent State University, Kent, Ohio
Craig Camp
Hatch Mott MacDonald, San Diego,
California
Tom Fuerst
The Robins Company, Solon, Ohio
Robert Martin
CH2M Hill, Milwaukee, Wisconsin
Babs Marquis
McMillen Jacobs Associates,
Burlington, Massachusetts
David Scarpato
Scarptec, Inc., Monument Beach,
Massachusetts
Nick Strater
Brierley Associates, Bedford,

REVIEW COMMITTEE

Leader:	Tom Iseley, Ph.D., P.E., Dist.M.ASCE
	CETF Professor, Civil Engineering
	Director, Trenchless Technology Center
	Louisiana Tech University, Ruston, Louisiana
Committee Members:	Mohammad Najafi, Ph.D., P.E.
	University of Texas at Arlington, Arlington,
	Texas
	Brian Dorwart, P.E., P.G.
	Brierley Associates, Bedford, New Hampshire
	Daniel L. Liotti, P.E.
	Midwest Mole, Inc., Greenfield, Indiana

CONTRIBUTORS TO THE ORIGINAL MANUSCRIPT (2004)

Task Committee	Mohammad Najafi
Chairman/Editor:	University of Texas at Arlington, Arlington,
	Texas (formerly with Michigan State
	University)
Task Committee	Ossama Salem
Secretary:	University of Cincinnati, Cincinnati, Ohio
Authors and Sponsors:	Jim Barbera
	Barbco, Inc., Canton, Ohio
	Leo Barbera
	Horizontal Holes International, Inc.
	Southern Pines, North Carolina
	Guru Kulandaivel
	Center for Underground Infrastructure
	Research and Education, Michigan State
	University, East Lansing, Michigan
	Dan Liotti
	Midwest Mole, Inc., Indianapolis, Indiana
	Michael J. Moore
	McLaughlin Boring Systems, Greenville,
	South Carolina
	Carl Neagoy
	Akkerman Inc., Brownsdale, Minnesota
	Gaylord Richey
	Astec Underground/American Augers,
	Loudon, Tennessee
	Raj Tanwani
	Ratnala-Bahl Engineers, Houston, Texas

ASCE COMMITTEE ON TRENCHLESS INSTALLATION OF PIPELINES (TIPS)

Tennyson Muindi, P.E.
Donna Dickert
Acquisitions Editor
Tenzing Barshee
Program Coordinator, Technical Activities
Julie McCullough
McMillen Jacobs Associates, San Francisco,
California

ABBREVIATIONS, ACRONYMS, AND INITIALISMS

acoustic/optical televiewer
American Association of State Highway Transportation
Officials
American National Standards Institute
American Society of Civil Engineers
American Society for Testing and Materials
boring machine tunnel attachment
boulder volume ratio
controlled boring system
centrifugally cast fiberglass reinforced plastic pipe
cobble volume ratio
Department of Transportation
differing site condition
down-the-hole
U.S. Environmental Protection Agency
Federal Emergency Management Agency
Federal Highway Administration
guided boring method
geotechnical baseline report
geotechnical design memorandum
geotechnical data report
geotechnical interpretive report
ground-penetrating radar
groundwater table
horizontal auger boring
horizontal earth boring
horizontal directional drilling

xvi	ABBREVIATIONS, ACRONYMS, AND INITIALISMS
HDPE	high-density polyethylene
HSA	hollow stem auger
ISRM	International Society of Rock Mechanics
ISTT	International Society for Trenchless Technology
LDBA	large-diameter boring attachment
LED	light-emitting diode
MIG	metal inert gas
MOP	manual of practice
MT	microtunneling
MTBM	microtunneling boring machine
NASTT	North American Society for Trenchless Technology
NDT	nondestructive testing
NPDES	National Pollutant Discharge Elimination System
OSHA	Occupational Safety and Health Administration
PI	plasticity index
PJ	pipe jacking
PTM	pilot tube method
PVC	polyvinyl chloride
QL	quality level
RPMs	revolutions per minute
RQD	rock-quality designation
SBU	small boring unit
SBU-A	SBU-auger
SBU-M	motorized SBU
SBU-RH	SBU rock head
SPT	standard penetration test
SUE	subsurface utility engineering
TBM	tunnel boring machine
TIPS	trenchless installation of pipelines
UCS	unconfined compressive strength
USACE	U.S. Army Corps of Engineers
USGS	U.S. Geological Survey
UT	utility tunneling
UTRC	Underground Technology Research Council

CHAPTER 1 GENERAL

There is a significant demand for underground infrastructure to transport our drinking water, wastewater, stormwater, natural gas, oil, and power. Once every four years, the American Society of Civil Engineers (ASCE) provides a comprehensive assessment of the nation's major infrastructure categories in the *Report Card for America's Infrastructure*. Using a simple A to F school report card format, the *Report Card* provides a comprehensive assessment of the nation's and needs, assigns grades, and makes recommendations for how to raise the grades (ASCE 2013).

According to the 2013 *Report Card*, the grade for drinking water, wastewater, and stormwater systems improved slightly from a D– to a D from 2009 to 2013. Many of our drinking water, wastewater, and stormwater systems are nearing the end of their useful life. There are an estimated 240,000 water main breaks per year in the United States. If every pipe needed to be replaced, the cost over the coming decades could reach more than \$1 trillion. Capital investment needs for the nation's wastewater and stormwater systems alone are estimated to total \$298 billion over the next 20 years. Pipes represent the largest capital need and comprise three-quarters of the total infrastructure needs. Rehabilitating to extend life spans and upgrading and expanding the network with new pipes will address many of the sanitary sewer overflows, combined sewer overflows, and other pipe-related issues (ASCE 2013).

The grade for energy remains a D+; America relies on aging pipeline transmission and distribution systems, some of which originated in the 1880s. The increased demand for natural gas and oil will become a greater challenge after 2020 as the population increases (ASCE 2013). Even with