Seismic Evaluation and Retrofit of Existing Buildings
Library of Congress Cataloging-in-Publication Data

Names: American Society of Civil Engineers.
Title: ASCE standard, ASCE/SEI, 41-17, seismic evaluation and retrofit of existing buildings.
Other titles: Seismic evaluation and retrofit of existing buildings.
Description: Reston, Virginia : American Society of Civil Engineers, 2017. l Includes bibliographical references and index.
Subjects: LCSH: Earthquake resistant design—Standards. l Buildings—Earthquake effects.
Classification: LCC TH1095 .A527 2017 | DDC 693.8/52021873–dc23
LC record available at https://lccn.loc.gov/2017047777

Published by American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, Virginia, 20191-4382
www.asce.org/bookstore l ascelibrary.org

This standard was developed by a consensus standards development process that has been accredited by the American National Standards Institute (ANSI). Accreditation by ANSI, a voluntary accreditation body representing public and private sector standards development organizations in the United States and abroad, signifies that the standards development process used by ASCE has met the ANSI requirements for openness, balance, consensus, and due process.

While ASCE’s process is designed to promote standards that reflect a fair and reasoned consensus among all interested participants, while preserving the public health, safety, and welfare that is paramount to its mission, it has not made an independent assessment of and does not warrant the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed herein. ASCE does not intend, nor should anyone interpret, ASCE’s standards to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this standard.

ASCE has no authority to enforce compliance with its standards and does not undertake to certify products for compliance or to render any professional services to any person or entity.

ASCE disclaims any and all liability for any personal injury, property damage, financial loss, or other damages of any nature whatsoever, including without limitation any direct, indirect, special, exemplary, or consequential damages, resulting from any person’s use of, or reliance on, this standard. Any individual who relies on this standard assumes full responsibility for such use.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE’s Civil Engineering Database (http://cedb.asce.org) or ASCE Library (http://ascelibrary.org) and using the “Permissions” link.

Errata: Errata, if any, can be found at https://doi.org/10.1061/9780784414859.

Copyright © 2017 by the American Society of Civil Engineers. All Rights Reserved.
ISBN 978-0-7844-8081-6 (PDF)
Manufactured in the United States of America.
ASCE STANDARDS

In 2014, the Board of Direction approved revisions to the ASCE Rules for Standards Committees to govern the writing and maintenance of standards developed by ASCE. All such standards are developed by a consensus standards process managed by the ASCE Codes and Standards Committee (CSC). The consensus process includes balloting by a balanced standards committee, and reviewing during a public comment period. All standards are updated or reaffirmed by the same process every five to ten years. Requests for formal interpretations shall be processed in accordance with Section 7 of ASCE Rules for Standards Committees which are available at www.asce.org. Errata, addenda, supplements, and interpretations, if any, for this standard can also be found at www.asce.org.

This standard has been prepared in accordance with recognized engineering principles and should not be used without the user’s competent knowledge for a given application. The publication of this standard by ASCE is not intended to warrant that the information contained therein is suitable for any general or specific use, and ASCE takes no position respecting the validity of patent rights. The user is advised that the determination of patent rights or risk of infringement is entirely their own responsibility.

A complete list of currently available standards is available in the ASCE Library (http://ascelibrary.org/page/books/s-standards).
Tips for Using This Standard

The standards provisions are contained in chapters 1 to 18. Standard provisions are mandatory.

The standard commentary is contained in chapters C1 to C18. Standard commentary is intended to help the reader understand how provisions were determined and how to apply them.

Gray bars down the side in the provisions (but not the commentary) indicate sections with substantive changes (additions or deletions) from the previous edition of the standard, ASCE/SEI 41-13.

This standard uses both customary and metric (S.I.) units in parentheses. A customary units is presented like this: 3,000 ft². An S.I. units is presented like this: (280 m²).

Reference consensus standards are listed in Chapter 18, where they are listed by number with title, publisher, and year of publication. In text, they are mentioned only by number: ASTM A992/A992M, AWC SDPWS-2015, IEBC.

Reference citations are listed at in Chapter C18 in commentary, where they are listed by author and date with accompanying bibliographic information. In the text, these references are called out by author and date: ASME (2001a), Nims et al. (1993), ICBO (1994).

 Supplements, errata, and interpretations may become available in the future. Please check for important new materials at https://doi.org/10.1061/9780784414859.
CONTENTS

ASCE STANDARDS .. iii

TIPS FOR USING THIS STANDARD .. iv

FOREWORD ... xxxix

ACKNOWLEDGMENTS ... xli

UNIT CONVERSIONS ... xlv

1 GENERAL REQUIREMENTS

1.1 Scope ... 1

1.2 Definitions and Notations

1.2.1 Definitions .. 1

1.2.2 Notations

1.2.2.1 Upper Case Notations .. 7

1.2.2.2 Lower-case Notations .. 14

1.2.2.3 Greek Notations .. 16

1.3 Evaluation and Retrofit Process .. 19

1.4 Seismic Evaluation Process

1.4.1 Selection of Performance Objective ... 19

1.4.2 Level of Seismicity .. 19

1.4.3 As-Built Information .. 19

1.4.4 Evaluation Procedures .. 19

1.4.5 Evaluation Report ... 19

1.5 Seismic Retrofit Process

1.5.1 Initial Considerations .. 20

1.5.2 Selection of Performance Objective ... 20

1.5.3 Level of Seismicity .. 20

1.5.4 As-Built Information .. 20

1.5.5 Retrofit Procedures .. 20

1.5.6 Retrofit Strategies ... 20

1.5.7 Retrofit Measures ... 20

1.5.8 Verification of Retrofit Design .. 20

1.5.9 Construction Documents .. 20

1.5.10 Construction Quality Assurance

1.5.10.1 Construction Quality Assurance Plan ... 20

1.5.10.2 Construction Quality Assurance Requirements .. 20

1.5.10.3 Responsibilities of the Authority Having Jurisdiction .. 21

2 PERFORMANCE OBJECTIVES AND SEISMIC HAZARDS.

2.1 Scope ... 23

2.2 Performance Objectives

2.2.1 Basic Performance Objective for Existing Buildings (BPOE) 23

2.2.2 Enhanced Performance Objectives .. 23

2.2.3 Limited Performance Objectives ... 23

2.2.4 Basic Performance Objective Equivalent to New Building Standards (BPON) 23

2.2.5 Partial Retrofit .. 23

2.2.6 System-Specific Performance Procedures ... 23

2.3 Target Building Performance Levels .. 23

2.3.1 Structural Performance Levels and Ranges .. 23
6 TIER 3 SYSTEMATIC EVALUATION AND RETROFIT

6.1 Scope .. 59
6.2 Data Collection Requirements ... 59
6.2.1 Minimum Data Collection Requirements .. 59
6.2.2 Usual Data Collection Requirements ... 59
6.2.3 Comprehensive Data Collection Requirements 59
6.2.4 Knowledge Factor ... 60
 6.2.4.1 General ... 60
 6.2.4.2 Linear Procedures .. 60
 6.2.4.3 Nonlinear Procedures ... 60
 6.2.4.4 Assumed Values of the Knowledge Factor .. 60
6.3 Tier 3 Evaluation Requirements .. 61
6.4 Tier 3 Retrofit Requirements ... 61

5.8 Tier 2 Deiciency-Based Retrofit Requirements .. 57
5.7 Procedures for Connections .. 57
 5.7.1 Anchorage for Normal Forces .. 57
 5.7.1.1 Wall Anchorage .. 57
 5.7.1.2 Stiffness of Wall Anchors .. 57
 5.7.1.3 Wood Ledgers with Cross-Grain Bending ... 57
 5.7.1.4 Precast Concrete Panel Connections .. 57
 5.7.2 Connections for Shear Transfer .. 57
 5.7.3 Connections for Vertical Elements ... 57
 5.7.3.1 Steel and Concrete Columns ... 57
 5.7.3.2 Shear Wall Boundary Columns .. 57
 5.7.3.3 Wood or Cold-Formed Steel Posts and Wood Sills and Cold-Formed
 Steel Base Tracks .. 57
 5.7.3.4 Concrete Walls, Precast Wall Panels, and Other Wall Panels 57
 5.7.3.5 Uplift at Pile Caps .. 57
 5.7.4 Interconnection of Elements ... 57
 5.7.4.1 Girdler–Column Connection ... 57
 5.7.4.2 Girdlers Supported by Walls or Pilasters .. 57
 5.7.4.3 Corbel Bearing and Connections ... 57
 5.7.4.4 Beam, Girdler, and Truss Supported on Unreinforced Masonry (URM)
 Walls or URM Pilasters ... 57
 5.7.5 Roof and Wall Panel Connections .. 57

5.6 Procedures for Diaphragms .. 56
 5.6.1 General Procedures for Diaphragms .. 56
 5.6.1.1 Diaphragm and Roof Chord Continuity ... 56
 5.6.1.2 Diaphragm Cross Ties ... 56
 5.6.1.3 Openings in Diaphragms at Shear Walls, Braced Frames, and Moment
 Frames .. 56
 5.6.1.4 Plan Irregularities in Diaphragms ... 56
 5.6.1.5 Diaphragm Reinforcement at Openings ... 56
 5.6.2 Procedures for Wood Diaphragms ... 56
 5.6.3 Procedures for Metal Deck Diaphragms ... 56
 5.6.4 Procedures for Precast Concrete Diaphragms .. 56
 5.6.5 Diaphragms Other than Wood, Metal Deck, Concrete, or Horizontal Bracing.
 .. 57

5.5.4 Procedures for Braced Frames .. 55
 5.5.4.1 Axial Stress Check ... 55
 5.5.4.2 Column Splices ... 55
 5.5.4.3 Slenderness of Diagonals .. 55
 5.5.4.4 Connection Strength ... 55
 5.5.4.5 Out-of-Plane Restraint for Braced Frames .. 56
 5.5.4.6 K-Bracing and Chevron-Bracing Configurations 56
 5.5.4.7 Tension-Only Braces ... 56
 5.5.4.8 Concentrically Braced Frame Joints .. 56

5.5.3.9 Procedures for Cold-Formed Steel Light-Frame Construction, Strap-Braced
 Wall Systems ... 56
 5.5.3.8 Procedures for Cold-Formed Steel Light-Frame Construction, Shear
 Wall Systems ... 56
 5.5.3.7 Procedures for Cold-Formed Steel Light-Frame Construction, Shear
 Wall Systems ... 56
 5.5.3.6 Procedures for Walls in Wood Frame Buildings 55
 5.5.3.5 Procedures for Infill Walls in Frames ... 55
 5.5.3.4 Procedures for Unreinforced Masonry Shear Walls 55

5.5.2 Procedures for Frame Systems ... 55
 5.5.2.1 Axial Stress Check ... 55
 5.5.2.2 Column Splices ... 55
 5.5.2.3 Slenderness of Diagonals .. 55
 5.5.2.4 Connection Strength ... 55
 5.5.2.5 Out-of-Plane Restraint for Frames ... 56

5.5.1 Procedures for Structural Systems ... 55
 5.5.1.1 Axial Stress Check ... 55
 5.5.1.2 Column Splices ... 55
 5.5.1.3 Slenderness of Diagonals .. 55
 5.5.1.4 Connection Strength ... 55
 5.5.1.5 Out-of-Plane Restraint for Structural Systems 56

5.4 Procedures for Connections .. 55
 5.4.1 Axial Stress Check ... 55
 5.4.2 Column Splices ... 55
 5.4.3 Slenderness of Diagonals ... 55
 5.4.4 Connection Strength .. 55
 5.4.5 Out-of-Plane Restraint for Connections .. 56

5.3 Procedures for Seismic Systems ... 55
 5.3.1 Axial Stress Check .. 55
 5.3.2 Column Splices .. 55
 5.3.3 Slenderness of Diagonals ... 55
 5.3.4 Connection Strength .. 55
 5.3.5 Out-of-Plane Restraint for Seismic Systems .. 56

5.2 Procedures for Connections .. 55
 5.2.1 Axial Stress Check ... 55
 5.2.2 Column Splices .. 55
 5.2.3 Slenderness of Diagonals ... 55
 5.2.4 Connection Strength .. 55

5.1 Procedures for Structural Systems .. 55
 5.1.1 Axial Stress Check ... 55
 5.1.2 Column Splices .. 55
 5.1.3 Slenderness of Diagonals ... 55
 5.1.4 Connection Strength .. 55
7 ANALYSIS PROCEDURES AND ACCEPTANCE CRITERIA

7.1 Scope .. 63
7.2 General Analysis Requirements .. 63
7.2.1 Analysis Procedures ... 63
7.2.2 Component Gravity Loads and Load Combinations 63
7.2.3 Mathematical Modeling .. 63
 7.2.3.1 Basic Assumptions .. 63
 7.2.3.2 Torsion .. 63
 7.2.3.3 Primary and Secondary Components 64
 7.2.3.4 Stiffness and Strength Assumptions 64
 7.2.3.5 Foundation Modeling ... 64
 7.2.3.6 Damping ... 64
7.2.4 Configuration .. 65
7.2.5 Multidirectional Seismic Effects ... 65
 7.2.5.1 Concurrent Seismic Effects 65
 7.2.5.2 Vertical Seismic Effects ... 65
7.2.6 P-Δ Effects .. 65
7.2.7 Soil–Structure Interaction ... 65
7.2.8 Overturning .. 66
 7.2.8.1 Overturning Effects for Linear Procedures 66
 7.2.8.2 Overturning Effects for Nonlinear Procedures 66
7.2.9 Diaphragms, Chords, Collectors, and Ties 66
 7.2.9.1 Classification of Diaphragms 66
 7.2.9.2 Mathematical Modeling .. 66
 7.2.9.3 Diaphragm Chords .. 67
 7.2.9.4 Diaphragm Collectors ... 67
 7.2.9.5 Diaphragm Ties ... 67
7.2.10 Continuity ... 67
7.2.11 Structural Walls and Their Anchorage 67
 7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms 67
 7.2.11.2 Out-of-Plane Strength of Walls 68
7.2.12 Structures Sharing Common Elements 68
 7.2.12.1 Interconnection .. 68
 7.2.12.2 Separation ... 68
7.2.13 Building Separation .. 68
 7.2.13.1 Minimum Separation ... 68
 7.2.13.2 Separation Exceptions ... 69
7.2.14 Verification of Analysis Assumptions 69
7.3 Analysis Procedure Selection .. 69
7.3.1 Linear Procedures .. 69
 7.3.1.1 Method to Determine Limitations on Use of Linear Procedures . 69
 7.3.1.2 Limitations on Use of the Linear Static Procedure 70
7.3.2 Nonlinear Procedures .. 70
 7.3.2.1 Nonlinear Static Procedure (NSP) 70
 7.3.2.2 Nonlinear Dynamic Procedure (NDP) 70
7.3.3 Alternative Rational Analysis .. 70
7.4 Analysis Procedures .. 71
7.4.1 Linear Static Procedure (LSP) ... 71
 7.4.1.1 Basis of the Procedure .. 71
 7.4.1.2 Period Determination for LSP 71
 7.4.1.3 Determination of Forces and Deformations for LSP 71
 7.4.1.4 Damping for LSP .. 73
7.4.2 Linear Dynamic Procedure (LDP) 73
 7.4.2.1 Basis of the Procedure .. 73
 7.4.2.2 Modeling and Analysis Considerations for LDP 73
 7.4.2.3 Determination of Forces and Deformations for LDP 73
 7.4.2.4 Damping for LDP .. 73
7.4.3 Nonlinear Static Procedure (NSP) 73
 7.4.3.1 Basis of the Procedure .. 73
 7.4.3.2 Modeling and Analysis Considerations for NSP 73
 7.4.3.3 Determination of Forces, Displacements, and Deformations for NSP . 74
 7.4.3.4 Damping for NSP .. 76
7.4.4 Nonlinear Dynamic Procedure (NDP) 76
 7.4.4.1 Basis of the Procedure .. 76
 7.4.4.2 Modeling and Analysis Considerations for NDP 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.4.3</td>
<td>Determination of Forces and Deformations for NDP</td>
<td>76</td>
</tr>
<tr>
<td>7.4.4.4</td>
<td>Damping for NDP</td>
<td>76</td>
</tr>
<tr>
<td>7.5</td>
<td>Acceptance Criteria</td>
<td></td>
</tr>
<tr>
<td>7.5.1</td>
<td>General Requirements</td>
<td></td>
</tr>
<tr>
<td>7.5.1.1</td>
<td>Primary and Secondary Components</td>
<td></td>
</tr>
<tr>
<td>7.5.1.2</td>
<td>Deformation-Controlled and Force-Controlled Actions</td>
<td></td>
</tr>
<tr>
<td>7.5.1.3</td>
<td>Expected and Lower-Bound Strengths</td>
<td></td>
</tr>
<tr>
<td>7.5.1.4</td>
<td>Material Properties</td>
<td></td>
</tr>
<tr>
<td>7.5.1.5</td>
<td>Component Capacities</td>
<td></td>
</tr>
<tr>
<td>7.5.2</td>
<td>Linear Procedures</td>
<td></td>
</tr>
<tr>
<td>7.5.2.1</td>
<td>Forces and Deformations</td>
<td></td>
</tr>
<tr>
<td>7.5.2.2</td>
<td>Acceptance Criteria for Linear Procedures</td>
<td></td>
</tr>
<tr>
<td>7.5.3</td>
<td>Nonlinear Procedures</td>
<td></td>
</tr>
<tr>
<td>7.5.3.1</td>
<td>Forces and Deformations</td>
<td></td>
</tr>
<tr>
<td>7.5.3.2</td>
<td>Acceptance Criteria for Nonlinear Procedures</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Alternative Modeling Parameters and Acceptance Criteria</td>
<td></td>
</tr>
<tr>
<td>7.6.1</td>
<td>Experimental Setup</td>
<td>80</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Data Reduction and Reporting</td>
<td>80</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Analysis Parameters and Acceptance Criteria for Subassemblies Based on Experimental Data</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>FOUNDATIONS AND GEOLOGIC SITE HAZARDS</td>
<td>83</td>
</tr>
<tr>
<td>8.1</td>
<td>Scope</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Site Characterization</td>
<td></td>
</tr>
<tr>
<td>8.2.1</td>
<td>Foundation Information</td>
<td></td>
</tr>
<tr>
<td>8.2.1.1</td>
<td>Foundation Conditions</td>
<td></td>
</tr>
<tr>
<td>8.2.1.2</td>
<td>Design Foundation Loads</td>
<td></td>
</tr>
<tr>
<td>8.2.1.3</td>
<td>Load-Deformation Characteristics Under Seismic Loading</td>
<td></td>
</tr>
<tr>
<td>8.2.2</td>
<td>Seismic–Geologic Site Hazards</td>
<td></td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>Fault Rupture</td>
<td></td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>Liquefaction</td>
<td></td>
</tr>
<tr>
<td>8.2.2.3</td>
<td>Settlement of Nonliquefiable Soils</td>
<td></td>
</tr>
<tr>
<td>8.2.2.4</td>
<td>Landsliding</td>
<td></td>
</tr>
<tr>
<td>8.2.2.5</td>
<td>Flooding or Inundation</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Mitigation of Seismic–Geologic Site Hazards</td>
<td>85</td>
</tr>
<tr>
<td>8.4</td>
<td>Foundation Strength and Stiffness</td>
<td>85</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Expected Foundation Capacities</td>
<td></td>
</tr>
<tr>
<td>8.4.1.1</td>
<td>Prescriptive Expected Capacities</td>
<td></td>
</tr>
<tr>
<td>8.4.1.2</td>
<td>Site-Specific Capacities</td>
<td></td>
</tr>
<tr>
<td>8.4.2</td>
<td>Load-Deformation Characteristics for Shallow Foundations</td>
<td></td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>Flexibility of Shallow Bearing Foundations</td>
<td></td>
</tr>
<tr>
<td>8.4.2.2</td>
<td>Soil Shear Modulus and Poisson’s Ratio Parameters</td>
<td></td>
</tr>
<tr>
<td>8.4.2.3</td>
<td>Shallow Footings Considered Rigid (Method 1)</td>
<td></td>
</tr>
<tr>
<td>8.4.2.4</td>
<td>Shallow Footings Considered Rigid (Method 2)</td>
<td></td>
</tr>
<tr>
<td>8.4.2.5</td>
<td>Shallow Foundations Not Rigid Relative to the Soil (Method 3)</td>
<td></td>
</tr>
<tr>
<td>8.4.2.6</td>
<td>Shallow Foundation Lateral Load</td>
<td></td>
</tr>
<tr>
<td>8.4.3</td>
<td>Pile Foundations</td>
<td></td>
</tr>
<tr>
<td>8.4.3.1</td>
<td>Stiffness Parameters</td>
<td></td>
</tr>
<tr>
<td>8.4.3.2</td>
<td>Capacity Parameters</td>
<td></td>
</tr>
<tr>
<td>8.4.4</td>
<td>Drilled Shafts</td>
<td></td>
</tr>
<tr>
<td>8.4.5</td>
<td>Deep Foundation Acceptance Criteria</td>
<td></td>
</tr>
<tr>
<td>8.4.5.1</td>
<td>Linear Procedures</td>
<td></td>
</tr>
<tr>
<td>8.4.5.2</td>
<td>Nonlinear Procedures</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Soil–Structure Interaction Effects</td>
<td>94</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Kinematic Interaction</td>
<td></td>
</tr>
<tr>
<td>8.5.1.1</td>
<td>Base Slab Averaging</td>
<td></td>
</tr>
<tr>
<td>8.5.1.2</td>
<td>Embedment</td>
<td></td>
</tr>
<tr>
<td>8.5.2</td>
<td>Foundation Damping Soil–Structure Interaction Effects</td>
<td></td>
</tr>
<tr>
<td>8.5.2.1</td>
<td>Radiation Damping for Rectangular Foundations</td>
<td></td>
</tr>
<tr>
<td>8.5.2.2</td>
<td>Soil Hysteretic Damping</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Seismic Earth Pressure</td>
<td>96</td>
</tr>
<tr>
<td>8.7</td>
<td>Foundation Retrofit</td>
<td>97</td>
</tr>
</tbody>
</table>
9 STEEL AND IRON ... 99
9.1 Scope ... 99
9.2 Material Properties and Condition Assessment 99
 9.2.1 General ... 99
 9.2.2 Properties of In-Place Materials and Components 99
 9.2.2.1 Material Properties ... 99
 9.2.2.2 Component Properties 100
 9.2.2.3 Test Methods to Quantify Properties 100
 9.2.2.4 Minimum Number of Tests 101
 9.2.2.5 Default Properties ... 103
 9.2.3 Condition Assessment ... 103
 9.2.3.1 General .. 103
 9.2.3.2 Scope and Procedures 103
 9.2.3.3 Basis for the Mathematical Building Model 105
 9.2.4 Knowledge Factor .. 105
 9.3 General Assumptions and Requirements 105
 9.3.1 Stiffness ... 105
 9.3.1.1 Use of Linear Procedures for Cold-Formed Steel Light-Frame Construction .. 105
 9.3.1.2 Use of Nonlinear Procedures for Cold-Formed Steel Light-Frame Construction ... 105
 9.3.2 Strength and Acceptance Criteria 105
 9.3.2.1 General ... 105
 9.3.2.2 Deformation-Controlled Actions 105
 9.3.2.3 Force-Controlled Actions 106
 9.3.2.4 Anchorage to Concrete 106
 9.3.3 Connection Requirements in Cold-Formed Steel Light-Frame Construction 106
 9.3.3.1 General ... 106
 9.3.3.2 Use of Nonlinear Procedures for Cold-Formed Steel Light-Frame Construction . 106
 9.3.4 Components Supporting Discontinuous Shear Walls in Cold-Formed Steel Light-Frame Construction ... 106
 9.3.4.1 General ... 106
 9.3.4.2 Use of Nonlinear Procedures for Cold-Formed Steel Light-Frame Construction . 106
 9.3.5 Retrofit Measures .. 106
 9.3.5.1 Retrofit Measures for Structural Steel 106
 9.3.5.2 Retrofit Measures for Cold-Formed Steel Light-Frame Construction 106
 9.4 Steel Moment Frames .. 106
 9.4.1 General ... 106
 9.4.2 Fully Restrained (FR) Moment Frames 106
 9.4.2.1 General ... 106
 9.4.2.2 Stiffness of FR Moment Frames 107
 9.4.2.3 Strength of FR Moment Frames 109
 9.4.2.4 Acceptance Criteria for FR Moment Frames 110
 9.4.2.5 Retrofit Measures for FR Moment Frames 121
 9.4.3 Partially Restrained (PR) Moment Frames 124
 9.4.3.1 General ... 124
 9.4.3.2 Stiffness of PR Moment Frames 124
 9.4.3.3 Strength of PR Moment Frames 124
 9.4.3.4 Acceptance Criteria for PR Moment Frames 124
 9.4.3.5 Retrofit Measures for PR Moment Frames 124
 9.5 Steel Braced Frames ... 124
 9.5.1 General ... 124
 9.5.2 Concentrically Braced Frames 125
 9.5.2.1 General ... 125
 9.5.2.2 Stiffness of Concentrically Braced Frames 125
 9.5.2.3 Strength of Concentrically Braced Frames 125
 9.5.2.4 Acceptance Criteria for Concentrically Braced Frames 125
 9.5.2.5 Retrofit Measures for Concentrically Braced Frames 126
 9.5.3 Eccentrically Braced Frames 126
 9.5.3.1 General ... 126
 9.5.3.2 Stiffness of Eccentrically Braced Frames 126
 9.5.3.3 Strength of Eccentrically Braced Frames 126
 9.5.3.4 Acceptance Criteria for Eccentrically Braced Frames 127
 9.5.3.5 Retrofit Measures .. 127
 9.5.4 Buckling-Restrained Braced Frames 127
 9.5.4.1 General ... 127
 9.5.4.2 Stiffness of Buckling-Restrained Braced Frames 127
 9.5.4.3 Strength of Buckling-Restrained Braced Frames 127
 9.5.4.4 Acceptance Criteria for Buckling-Restrained Braced Frames 128
 9.5.4.5 Retrofit Measures for Buckling-Restrained Braced Frames 128
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.5</td>
<td>Steel Plate Shear Walls</td>
<td>128</td>
</tr>
<tr>
<td>9.5.5.1</td>
<td>General</td>
<td>128</td>
</tr>
<tr>
<td>9.5.5.2</td>
<td>Stiffness of Steel Plate Shear Walls</td>
<td>128</td>
</tr>
<tr>
<td>9.5.5.3</td>
<td>Strength of Steel Plate Shear Walls</td>
<td>128</td>
</tr>
<tr>
<td>9.5.5.4</td>
<td>Acceptance Criteria for Steel Plate Shear Walls</td>
<td>129</td>
</tr>
<tr>
<td>9.5.5.5</td>
<td>Retrofit Measures for Steel Plate Shear Walls</td>
<td>129</td>
</tr>
<tr>
<td>9.6</td>
<td>Steel Frames with Infills</td>
<td>129</td>
</tr>
<tr>
<td>9.7</td>
<td>Cold-Formed Steel Light-Frame Construction, Shear Wall Systems</td>
<td>129</td>
</tr>
<tr>
<td>9.7.1</td>
<td>General</td>
<td>129</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Types of Cold-Formed Steel Light-Frame Construction, Shear Wall Systems</td>
<td>129</td>
</tr>
<tr>
<td>9.7.2.1</td>
<td>Existing Cold-Formed Steel Light-Frame Shear Walls</td>
<td>129</td>
</tr>
<tr>
<td>9.7.2.2</td>
<td>Enhanced Cold-Formed Steel Light-Frame Shear Walls</td>
<td>129</td>
</tr>
<tr>
<td>9.7.2.3</td>
<td>New Cold-Formed Steel Light-Frame Shear Walls</td>
<td>129</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction Shear Wall Systems</td>
<td>129</td>
</tr>
<tr>
<td>9.7.3.1</td>
<td>Wood Structural Panels</td>
<td>129</td>
</tr>
<tr>
<td>9.7.3.2</td>
<td>Steel Sheet Sheathing</td>
<td>131</td>
</tr>
<tr>
<td>9.7.3.3</td>
<td>Gypsum Board Panel</td>
<td>132</td>
</tr>
<tr>
<td>9.7.3.4</td>
<td>Fiberboard Panels</td>
<td>132</td>
</tr>
<tr>
<td>9.7.3.5</td>
<td>Plaster on Metal Lath Shear Walls</td>
<td>132</td>
</tr>
<tr>
<td>9.8</td>
<td>Cold-Formed Steel Moment-Frame Systems</td>
<td>132</td>
</tr>
<tr>
<td>9.8.1</td>
<td>General</td>
<td>132</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Types of Cold-Formed Steel Moment-Frame Systems</td>
<td>133</td>
</tr>
<tr>
<td>9.8.2.1</td>
<td>Existing Cold-Formed Steel Moment-Frame Systems</td>
<td>133</td>
</tr>
<tr>
<td>9.8.2.2</td>
<td>Enhanced Cold-Formed Steel Moment-Frame Systems</td>
<td>133</td>
</tr>
<tr>
<td>9.8.2.3</td>
<td>New Cold-Formed Steel Moment-Frame Systems</td>
<td>133</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Moment-Frame Systems</td>
<td>133</td>
</tr>
<tr>
<td>9.8.3.1</td>
<td>Generic Cold-Formed Steel Moment Connection</td>
<td>133</td>
</tr>
<tr>
<td>9.8.3.2</td>
<td>Cold-Formed Steel Special Bolted Moment Frame</td>
<td>134</td>
</tr>
<tr>
<td>9.9</td>
<td>Cold-Formed Steel Light-Frame Construction, Strap-Braced Wall Systems</td>
<td>135</td>
</tr>
<tr>
<td>9.9.1</td>
<td>General</td>
<td>135</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Types of Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls</td>
<td>135</td>
</tr>
<tr>
<td>9.9.2.1</td>
<td>Existing Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls</td>
<td>135</td>
</tr>
<tr>
<td>9.9.2.2</td>
<td>Cold-Formed Steel Light-Frame Construction with Enhanced Strap-Braced Walls</td>
<td>135</td>
</tr>
<tr>
<td>9.9.2.3</td>
<td>Cold-Formed Steel Light-Frame Construction with New Strap-Braced Walls</td>
<td>135</td>
</tr>
<tr>
<td>9.9.3</td>
<td>Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls</td>
<td>135</td>
</tr>
<tr>
<td>9.9.3.1</td>
<td>Stiffness</td>
<td>135</td>
</tr>
<tr>
<td>9.9.3.2</td>
<td>Strength</td>
<td>135</td>
</tr>
<tr>
<td>9.9.3.3</td>
<td>Acceptance Criteria</td>
<td>135</td>
</tr>
<tr>
<td>9.9.3.4</td>
<td>Connections</td>
<td>135</td>
</tr>
<tr>
<td>9.10</td>
<td>Diaphragms</td>
<td>135</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Bare Metal Deck Diaphragms</td>
<td>135</td>
</tr>
<tr>
<td>9.10.1.1</td>
<td>General</td>
<td>135</td>
</tr>
<tr>
<td>9.10.1.2</td>
<td>Stiffness of Bare Metal Deck Diaphragms</td>
<td>135</td>
</tr>
<tr>
<td>9.10.1.3</td>
<td>Strength of Bare Metal Deck Diaphragms</td>
<td>136</td>
</tr>
<tr>
<td>9.10.1.4</td>
<td>Acceptance Criteria for Bare Metal Deck Diaphragms</td>
<td>136</td>
</tr>
<tr>
<td>9.10.1.5</td>
<td>Retrofit Measures for Bare Metal Deck Diaphragms</td>
<td>136</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Metal Deck Diaphragms with Structural Concrete Topping</td>
<td>136</td>
</tr>
<tr>
<td>9.10.2.1</td>
<td>General</td>
<td>136</td>
</tr>
<tr>
<td>9.10.2.2</td>
<td>Stiffness of Metal Deck Diaphragms with Structural Concrete Topping</td>
<td>136</td>
</tr>
<tr>
<td>9.10.2.3</td>
<td>Strength of Metal Deck Diaphragms with Structural Concrete Topping</td>
<td>136</td>
</tr>
<tr>
<td>9.10.2.4</td>
<td>Acceptance Criteria for Metal Deck Diaphragms with Structural Concrete Topping</td>
<td>136</td>
</tr>
<tr>
<td>9.10.2.5</td>
<td>Retrofit Measures for Metal Deck Diaphragms with Structural Concrete Topping</td>
<td>136</td>
</tr>
<tr>
<td>9.10.3</td>
<td>Metal Deck Diaphragms with Nonstructural Topping</td>
<td>136</td>
</tr>
<tr>
<td>9.10.3.1</td>
<td>General</td>
<td>136</td>
</tr>
<tr>
<td>9.10.3.2</td>
<td>Stiffness of Metal Deck Diaphragms with Nonstructural Topping</td>
<td>137</td>
</tr>
<tr>
<td>9.10.3.3</td>
<td>Strength of Metal Deck Diaphragms with Nonstructural Topping</td>
<td>137</td>
</tr>
<tr>
<td>9.10.3.4</td>
<td>Acceptance Criteria for Metal Deck Diaphragms with Nonstructural Topping</td>
<td>137</td>
</tr>
</tbody>
</table>